Galois action on mapping class groups

被引:2
作者
Iijima, Yu [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
mapping class group; outer Galois representation; hyperbolic curve; COMBINATORIAL ANABELIAN GEOMETRY; MONODROMY REPRESENTATIONS; CURVES;
D O I
10.32917/hmj/1439219709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be a prime number. In the paper, we study the outer Galois action on the profinite and the relative pro-l completions of mapping class groups of pointed orientable topological surfaces. In the profinite case, we prove that the outer Galois action is faithful. In the pro-l case, we prove that the kernel of the outer Galois action has certain stability properties with respect to the genus and the number of punctures. Also, we prove a variant of the above results for arbitrary families of curves.
引用
收藏
页码:207 / 230
页数:24
相关论文
共 34 条
[1]   On a geometric description of Gal((Q)over-barp/Qp) and a p-adic avatar of (GT)over-cap [J].
André, Y .
DUKE MATHEMATICAL JOURNAL, 2003, 119 (01) :1-39
[2]  
[Anonymous], 2012, Princeton Mathematical Series
[3]   On the filtration of topological and pro-l mapping class groups of punctured Riemann surfaces [J].
Asada, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (01) :13-36
[4]   The faithfulness of the monodromy representations associated with certain families of algebraic curves [J].
Asada, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (2-3) :123-147
[5]  
Belyi G. V., 1979, IZV AKAD NAUK SSSR M, V43, P276
[6]  
Belyi G. V., 1979, IZV AN SSSR M, V43, P479
[7]   ON THE PROCONGRUENCE COMPLETION OF THE TEICHMULLER MODULAR GROUP [J].
Boggi, Marco .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (10) :5185-5221
[9]  
Deligne P., 1969, I HAUTES ETUDES SCI, V36, P75, DOI 10.1007/BF02684599
[10]  
GROSSMAN EK, 1974, J LOND MATH SOC, V9, P160