Midbrain circuits that set locomotor speed and gait selection

被引:309
作者
Caggiano, V. [1 ,4 ]
Leiras, R. [1 ,2 ]
Goni-Erro, H. [1 ,2 ]
Masini, D. [3 ]
Bellardita, C. [1 ,2 ]
Bouvier, J. [1 ,5 ,6 ]
Caldeira, V. [1 ]
Fisone, G. [3 ]
Kiehn, O. [1 ,2 ]
机构
[1] Karolinska Inst, Dept Neurosci, Mammalian Locomotor Lab, S-17177 Stockholm, Sweden
[2] Univ Copenhagen, Dept Neurosci, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
[3] Karolinska Inst, Dept Neurosci, Lab Mol Neuropharmacol, S-17177 Stockholm, Sweden
[4] IBM TJ Watson Res Ctr, Computat Biol Ctr, 1101 Kitchawan Rd,Route 134, Yorktown Hts, NY 10598 USA
[5] CENS, UMR9197, Paris Saclay Inst Neurosci, F-91190 Gif Sur Yvette, France
[6] Univ Paris 11, F-91190 Gif Sur Yvette, France
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
BRAIN-STEM; BASAL GANGLIA; NEURONS; INITIATION; PEDUNCULOPONTINE; ORGANIZATION; PATHWAYS; REGION;
D O I
10.1038/nature25448
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Locomotion is a fundamental motor function common to the animal kingdom. It is implemented episodically and adapted to behavioural needs, including exploration, which requires slow locomotion, and escape behaviour, which necessitates faster speeds. The control of these functions originates in brainstem structures, although the neuronal substrate(s) that support them have not yet been elucidated. Here we show in mice that speed and gait selection are controlled by glutamatergic excitatory neurons (GlutNs) segregated in two distinct midbrain nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). GlutNs in both of these regions contribute to the control of slower, alternating-gait locomotion, whereas only GlutNs in the CnF are able to elicit high-speed, synchronous-gait locomotion. Additionally, both the activation dynamics and the input and output connectivity matrices of GlutNs in the PPN and the CnF support explorative and escape locomotion, respectively. Our results identify two regions in the midbrain that act in conjunction to select context-dependent locomotor behaviours.
引用
收藏
页码:455 / +
页数:20
相关论文
共 41 条
[21]   Decoding the organization of spinal circuits that control locomotion [J].
Kiehn, Ole .
NATURE REVIEWS NEUROSCIENCE, 2016, 17 (04) :224-238
[22]   Pharmacological and genetic influences on hole-board behaviors in mice [J].
Kliethermes, Christopher L. ;
Crabbe, John C. .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 2006, 85 (01) :57-65
[23]   Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits [J].
Lemieux, Maxime ;
Josset, Nicolas ;
Roussel, Marie ;
Couraud, Sebastien ;
Bretzner, Frederic .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[24]   Spinal projections from the presumptive midbrain locomotor region in the mouse [J].
Liang, Huazheng ;
Paxinos, George ;
Watson, Charles .
BRAIN STRUCTURE & FUNCTION, 2012, 217 (02) :211-219
[25]   THE PERIAQUEDUCTAL GRAY ROSTRAL MEDULLA CONNECTION IN THE DEFENSE REACTION - EFFERENT PATHWAYS AND DESCENDING CONTROL MECHANISMS [J].
LOVICK, TA .
BEHAVIOURAL BRAIN RESEARCH, 1993, 58 (1-2) :19-25
[26]   A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice [J].
Machado, Ana S. ;
Darmohray, Dana M. ;
Fayad, Joao ;
Marques, Hugo G. ;
Carey, Megan R. .
ELIFE, 2015, 4
[27]   Topographical organization of the pedunculopontine nucleus [J].
Martinez-Gonzalez, Cristina ;
Bolam, J. Paul ;
Mena-Segovia, Juan .
FRONTIERS IN NEUROANATOMY, 2011, 5
[28]   Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region [J].
Noga, BR ;
Kriellaars, DJ ;
Brownstone, RM ;
Jordan, LM .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (03) :1464-1478
[29]   Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering [J].
Quiroga, RQ ;
Nadasdy, Z ;
Ben-Shaul, Y .
NEURAL COMPUTATION, 2004, 16 (08) :1661-1687
[30]   Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia [J].
Roseberry, Thomas K. ;
Lee, A. Moses ;
Lalive, Arnaud L. ;
Wilbrecht, Linda ;
Bonci, Antonello ;
Kreitzer, Anatol C. .
CELL, 2016, 164 (03) :526-537