The entropy of a binary symmetric Hidden Markov Process is calculated as an expansion in the noise parameter epsilon. We map the problem onto a one-dimensional Ising model in a large field of random signs and calculate the expansion coefficients up to second order in epsilon. Using a conjecture we extend the calculation to 11th order and discuss the convergence of the resulting series.
机构:
Univ Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Abundo, Mario
Pirozzi, Enrica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Federico II, Dipartimento Matemat & Applicaz, Via Cintia,Complesso Monte S Angelo, I-80126 Naples, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
机构:
Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
Chung, ACS
Shen, HC
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China