Single-particle dynamics of the Anderson model: a two-self-energy description within the numerical renormalization group approach

被引:9
作者
Galpin, MR [1 ]
Logan, DE [1 ]
机构
[1] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
关键词
D O I
10.1088/0953-8984/17/43/013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Single-particle dynamics of the Anderson impurity model are studied using both the numerical renormalization group (NRG) method and the local moment approach (LMA). It is shown that a 'two-self-energy' description of dynamics inherent to the LMA, as well as a conventional 'single-self-energy' description, arise within NRG; each yielding correctly the same local single-particle spectrum. Explicit NRG results are obtained for the broken symmetry spectral constituents arising in a two-self-energy description, and the total spectrum. These are also compared to analytical results obtained from the LMA as implemented in practice. Very good agreement between the two is found, essentially on all relevant energy scales from the high-energy Hubbard satellites to the low-energy Kondo resonance.
引用
收藏
页码:6959 / 6968
页数:10
相关论文
共 18 条
[1]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[2]   Numerical renormalization group calculations for the self-energy of the impurity Anderson model [J].
Bulla, R ;
Hewson, AC ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) :8365-8380
[3]   The soft-gap Anderson model: comparison of renormalization group and local moment approaches [J].
Bulla, R ;
Glossop, MT ;
Logan, DE ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (23) :4899-4921
[4]   TRANSPORT-COEFFICIENTS OF THE ANDERSON MODEL VIA THE NUMERICAL RENORMALIZATION-GROUP [J].
COSTI, TA ;
HEWSON, AC ;
ZLATIC, V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (13) :2519-2558
[5]   On the scaling spectrum of the Anderson impurity model [J].
Dickens, NL ;
Logan, DE .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (20) :4505-4517
[6]   Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics [J].
Glossop, MT ;
Logan, DE .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (44) :7519-7554
[7]   Single-particle dynamics of the Anderson model: a local moment approach [J].
Glossop, MT ;
Logan, DE .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (26) :6737-6760
[8]  
Hewson A, 1993, KONDO PROBLEM HEAVY
[9]   RENORMALIZATION-GROUP APPROACH TO THE ANDERSON MODEL OF DILUTE MAGNETIC-ALLOYS .1. STATIC PROPERTIES FOR THE SYMMETRIC CASE [J].
KRISHNAMURTHY, HR ;
WILKINS, JW ;
WILSON, KG .
PHYSICAL REVIEW B, 1980, 21 (03) :1003-1043
[10]   RENORMALIZATION-GROUP APPROACH TO THE ANDERSON MODEL OF DILUTE MAGNETIC-ALLOYS .2. STATIC PROPERTIES FOR THE ASYMMETRIC CASE [J].
KRISHNAMURTHY, HR ;
WILKINS, JW ;
WILSON, KG .
PHYSICAL REVIEW B, 1980, 21 (03) :1044-1083