Smart Shear-Thinning Hydrogels as Injectable Drug Delivery Systems

被引:69
|
作者
Gharaie, Sadaf Samimi [1 ,2 ,3 ]
Dabiri, Seyed Mohammad Hossein [1 ,4 ]
Akbari, Mohsen [1 ,2 ,3 ]
机构
[1] Univ Victoria, Dept Mech Engn, LiME, Victoria, BC V8P 5C2, Canada
[2] Univ Victoria, Ctr Biomed Res, Victoria, BC V8P 5C2, Canada
[3] Univ Victoria, Ctr Adv Mat & Related Technol, Victoria, BC V8P 5C2, Canada
[4] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, I-16145 Genoa, Italy
来源
POLYMERS | 2018年 / 10卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
shear-thinning; hydrogels; pH-responsive; gelatin; laponite; chitosan; N-isopropylacrylamide; nanocomposite; PH; NANOPARTICLES; DESIGN; ADSORPTION; ALGINATE; KINETICS; FTIR;
D O I
10.3390/polym10121317
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, we fabricated and characterized a smart shear-thinning hydrogel composed of gelatin and laponite for localized drug delivery. We added chitosan (Chi) and poly N-isopropylacrylamide-co-Acrylic acid (PNIPAM) particles to the shear-thinning gel to render it pH-responsive. The effects of total solid weight and the percentage of laponite in a solid mass on the rheological behavior and mechanical properties were investigated to obtain the optimum formulation. The nanocomposite gel and particles were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), zeta potential, and dynamic light scattering techniques. Finally, release related experiment including degradability, swelling and Rhodamine B (Rd) release at various pH were performed. The results suggest that incorporation of silicate nanoplatelets in the gelatin led to the formation of the tunable porous composite, with a microstructure that was affected by introducing particles. Besides, the optimum formulation possessed shear-thinning properties with modified rheological and mechanical properties which preserved its mechanical properties while incubated in physiological conditions. The release related experiments showed that the shear-thinning materials offer pH-sensitive behavior so that the highest swelling ratio, degradation rate, and Rd release were obtained at pH 9.18. Therefore, this nanocomposite gel can be potentially used to develop pH-sensitive systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Rapid wetting of shear-thinning fluids
    Yada, Susumu
    Bazesefidpar, Kazem
    Tammisola, Outi
    Amberg, Gustav
    Bagheri, Shervin
    PHYSICAL REVIEW FLUIDS, 2023, 8 (04)
  • [42] Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review
    Dattilo, Marco
    Patitucci, Francesco
    Prete, Sabrina
    Parisi, Ortensia Ilaria
    Puoci, Francesco
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (02)
  • [43] Gelatin-based hydrogels and ferrogels as smart drug delivery systems: synthesis, characterization and drug release kinetics
    Deniz Akın Şahbaz
    Polymer Bulletin, 2024, 81 : 5215 - 5235
  • [44] Thermosensitive Polymeric Hydrogels As Drug Delivery Systems
    Gong, C.
    Qi, T.
    Wei, X.
    Qu, Y.
    Wu, Q.
    Luo, F.
    Qian, Z.
    CURRENT MEDICINAL CHEMISTRY, 2013, 20 (01) : 79 - 94
  • [45] Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy
    Jin, Hua
    Dai, Xiao-Hui
    Wu, Chuan
    Pan, Jian-Ming
    Wang, Xiao-Hong
    Yan, Yong-Sheng
    Liu, Dong-Ming
    Sun, Lin
    EUROPEAN POLYMER JOURNAL, 2015, 66 : 149 - 159
  • [46] Shear-Thinning and Rapidly Recovering Hydrogels of Polymeric Nanofibers Formed by Supramolecular Self-Assembly
    Gruschwitz, Franka, V
    Hausig, Franziska
    Schueler, Philipp
    Kimmig, Julian
    Hoeppener, Stephanie
    Pretzel, David
    Schubert, Ulrich S.
    Catrouillet, Sylvain
    Brendel, Johannes C.
    CHEMISTRY OF MATERIALS, 2022, 34 (05) : 2206 - 2217
  • [47] Thermo-Responsive Hydrogels Encapsulating Targeted Core-Shell Nanoparticles as Injectable Drug Delivery Systems
    Ertugral-Samgar, Elif Gulin
    Ozmen, Ali Murad
    Gok, Ozgul
    PHARMACEUTICS, 2023, 15 (09)
  • [48] Shear-Thinning Characteristics of Nematic Liquid Crystals Doped with Nanoparticles
    Kimura, Munehiro
    Hanafi, Zur Ain Binti
    Takagi, Tatsuya
    Sawara, Ryosuke
    Fujii, Shuji
    CRYSTALS, 2016, 6 (11):
  • [49] Dynamic settling of particles in shear flows of shear-thinning fluids
    Childs, L. H.
    Hogg, A. J.
    Pritchard, D.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 235 : 83 - 94
  • [50] Turbulent pipe flow of shear-thinning fluids
    Rudman, M
    Blackburn, HM
    Graham, LJW
    Pullum, L
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 118 (01) : 33 - 48