Acyclic edge coloring of planar graphs with Δ colors

被引:6
|
作者
Hudak, David [2 ]
Kardos, Frantisek [2 ]
Luzar, Borut [1 ]
Sotak, Roman [2 ]
Skrekovski, Riste [3 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
[3] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 61000, Slovenia
关键词
Acyclic edge coloring; Planar graph; Discharging method;
D O I
10.1016/j.dam.2012.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that Delta(G) + 2 colors suffice for an acyclic edge coloring of every graph G (Fiamcik, 1978 [8]). The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is Delta + 12 (Basavaraju and Chandran, 2009[3]). In this paper, we study simple planar graphs which need only Delta(G) colors for an acyclic edge coloring. We show that a planar graph with girth g and maximum degree Delta admits such acyclic edge coloring if g >= 12, or g >= 8 and Delta >= 4, or g >= 7 and Delta >= 5, or g >= 6 and Delta >= 6, org >= 5 and Delta >= 10. Our results improve some previously known bounds. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1356 / 1368
页数:13
相关论文
共 50 条
  • [41] Acyclic Edge Coloring of Chordal Graphs with Bounded Degree
    Yulai Ma
    Yongtang Shi
    Weifan Wang
    Graphs and Combinatorics, 2021, 37 : 2621 - 2636
  • [42] A note on acyclic edge coloring of complete bipartite graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4646 - 4648
  • [43] Acyclic edge coloring of 2-degenerate graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 1 - 27
  • [44] On acyclic edge-coloring of complete bipartite graphs
    Venkateswarlu, Ayineedi
    Sarkar, Santanu
    Ananthanarayanan, Sai Mali
    DISCRETE MATHEMATICS, 2017, 340 (03) : 481 - 493
  • [45] Acyclic edge colorings of planar graphs and seriesparallel graphs
    Hou JianFeng
    Wu JianLiang
    Liu GuiZhen
    Liu Bin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (03): : 605 - 616
  • [46] Optimal acyclic edge-coloring of cubic graphs
    Andersen, Lars Dovling
    Macajova, Edita
    Mazak, Jan
    JOURNAL OF GRAPH THEORY, 2012, 71 (04) : 353 - 364
  • [47] Acyclic Edge Coloring of Chordal Graphs with Bounded Degree
    Ma, Yulai
    Shi, Yongtang
    Wang, Weifan
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2621 - 2636
  • [48] Acyclic edge colorings of planar graphs and seriesparallel graphs
    JianFeng Hou
    JianLiang Wu
    GuiZhen Liu
    Bin Liu
    Science in China Series A: Mathematics, 2009, 52 : 605 - 616
  • [49] Acyclic Edge Coloring of Graphs with Maximum Degree 4
    Basavaraju, Manu
    Chandran, L. Sunill
    JOURNAL OF GRAPH THEORY, 2009, 61 (03) : 192 - 209
  • [50] Edge DP-coloring in planar graphs
    Zhang, Li
    Lu, You
    Zhang, Shenggui
    DISCRETE MATHEMATICS, 2021, 344 (05)