Acyclic edge coloring of planar graphs with Δ colors

被引:7
作者
Hudak, David [2 ]
Kardos, Frantisek [2 ]
Luzar, Borut [1 ]
Sotak, Roman [2 ]
Skrekovski, Riste [3 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice, Slovakia
[3] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 61000, Slovenia
关键词
Acyclic edge coloring; Planar graph; Discharging method;
D O I
10.1016/j.dam.2012.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that Delta(G) + 2 colors suffice for an acyclic edge coloring of every graph G (Fiamcik, 1978 [8]). The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is Delta + 12 (Basavaraju and Chandran, 2009[3]). In this paper, we study simple planar graphs which need only Delta(G) colors for an acyclic edge coloring. We show that a planar graph with girth g and maximum degree Delta admits such acyclic edge coloring if g >= 12, or g >= 8 and Delta >= 4, or g >= 7 and Delta >= 5, or g >= 6 and Delta >= 6, org >= 5 and Delta >= 10. Our results improve some previously known bounds. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1356 / 1368
页数:13
相关论文
共 15 条
[1]   Acyclic edge colorings of graphs [J].
Alon, N ;
Sudakov, B ;
Zaks, A .
JOURNAL OF GRAPH THEORY, 2001, 37 (03) :157-167
[2]  
Basavaraju M., 2009, ACYCLIC EDGE COLORIN
[3]   A note on acyclic edge coloring of complete bipartite graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
DISCRETE MATHEMATICS, 2009, 309 (13) :4646-4648
[4]   Acyclic edge colouring of planar graphs without short cycles [J].
Borowiecki, Mieczyslaw ;
Fiedorowicz, Anna .
DISCRETE MATHEMATICS, 2010, 310 (09) :1445-1455
[5]  
Burnstein M.I., 1979, SOOBSC AKAD NAUK GRU, V93, P21
[6]  
Cohen F.H.N., 2009, ACYCLIC EDGE COLOURI
[7]   Some results on acyclic edge coloring of plane graphs [J].
Dong, Wei ;
Xu, Baogang .
INFORMATION PROCESSING LETTERS, 2010, 110 (20) :887-892
[8]  
Fiamcik J., 1978, Math Slovaca, V28, P139
[9]   About acyclic edge colourings of planar graphs [J].
Fiedorowicz, Anna ;
Haluszczak, Mariusz ;
Narayanan, Narayanan .
INFORMATION PROCESSING LETTERS, 2008, 108 (06) :412-417
[10]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408