Spectral Analysis of Some Graphs with Infinite Rays

被引:2
作者
Lebid', V. O. [1 ]
Nyzhnyk, L. O. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Math, Kiev, Ukraine
关键词
Hilbert Space; Jacobian Matrix; Adjacency Matrix; Spectral Theory; Jacobian Matrice;
D O I
10.1007/s11253-015-1013-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform a detailed spectral analysis of countable graphs formed by joining semibounded infinite chains to vertices of a finite graph. The spectrum of a self-adjoint operator generated by the adjacency matrix of the graph is characterized, the spectral measure is constructed, the eigenvectors are presented in the explicit form, and the spectral expansion in eigenvectors is obtained.
引用
收藏
页码:1333 / 1345
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1965, EXPANSION EIGENFUNCT
[2]  
[Anonymous], 2004, Differential Equations on Graphs
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]  
CVETKOVI C D.M., 1980, Pure Appl. Math., V87
[5]  
Lebid V. O. ', 2013, NAUKMA ACAD RECORDS, V139, P18
[6]  
Lebid V. O. ', 2014, REPORTS NATL ACAD SC, P29
[7]  
Mantoiu M., 2006, ARXIVMATHPH0603020V1
[8]   THE SPECTRUM OF AN INFINITE GRAPH [J].
MOHAR, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 48 (DEC) :245-256
[9]   A SURVEY ON SPECTRA OF INFINITE-GRAPHS [J].
MOHAR, B ;
WOESS, W .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :209-234
[10]  
MOSKALEVA YP, 2007, INTRO SPECTRAL THEOR