A computational framework for the inheritance pattern of genomic imprinting for complex traits

被引:17
作者
Wang, Chenguang [3 ]
Wang, Zhong [1 ]
Prows, Daniel R. [4 ]
Wu, Rongling [1 ,2 ]
机构
[1] Penn State Univ, Ctr Stat Genet, University Pk, PA 16802 USA
[2] Beijing Forestry Univ, Ctr Computat Biol, Beijing, Peoples R China
[3] US FDA, Ctr Devices & Radiol Hlth, Off Surveillance & Biometr, Rockville, MD 20857 USA
[4] Univ Cincinnati, Coll Medicine, Cincinnati, OH 45221 USA
关键词
LOCI; MODEL; GENE; CROSSES;
D O I
10.1093/bib/bbr023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic imprinting, by which the expression of a gene depends on the parental origin of its alleles, may be subjected to reprogramming through each generation. Currently, such reprogramming is limited to qualitative description only, lacking more precise quantitative estimation for its extent, pattern and mechanism. Here, we present a computational framework for analyzing the magnitude of genetic imprinting and its transgenerational inheritance mode. This quantitative model is based on the breeding scheme of reciprocal backcrosses between reciprocal F-1 hybrids and original inbred parents, in which the transmission of genetic imprinting across generations can be tracked. We define a series of quantitative genetic parameters that describe the extent and transmission mode of genetic imprinting and further estimate and test these parameters within a genetic mapping framework using a new powerful computational algorithm. The model and algorithm described will enable geneticists to identify and map imprinted quantitative trait loci and dictate a comprehensive atlas of developmental and epigenetic mechanisms related to genetic imprinting. We illustrate the new discovery of the role of genetic imprinting in regulating hyperoxic acute lung injury survival time using a mouse reciprocal backcross design.
引用
收藏
页码:34 / 45
页数:12
相关论文
共 31 条
  • [21] A computational framework for the inference of protein complex remodeling from whole-proteome measurements
    Buljan, Marija
    Banaei-Esfahani, Amir
    Blattmann, Peter
    Meier-Abt, Fabienne
    Shao, Wenguang
    Vitek, Olga
    Tang, Hua
    Aebersold, Ruedi
    NATURE METHODS, 2023, 20 (10) : 1523 - +
  • [22] Genomic prediction for complex traits across multiples harvests in alfalfa (Medicago sativa L.) is enhanced by enviromics
    Fernandes Filho, Claudio Carlos
    Andrade, Mario Henrique Murad Leite
    Nunes, Jose Airton Rodrigues
    Jarquin, Diego Hernandez
    Rios, Esteban Fernando
    PLANT GENOME, 2023, 16 (02)
  • [23] The Collaborative Cross - A next generation mouse genetic resource population for high resolution genomic analysis of complex traits
    Soller, M.
    Iraqi, F. A.
    LIVESTOCK SCIENCE, 2014, 166 : 19 - 25
  • [24] Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios
    Jarquin, Diego
    Kajiya-Kanegae, Hiromi
    Taishen, Chen
    Yabe, Shiori
    Persa, Reyna
    Yu, Jianming
    Nakagawa, Hiroshi
    Yamasaki, Masanori
    Iwata, Hiroyoshi
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [25] Mesh d-refinement: A data-based computational framework to account for complex material response
    Wattel, Sacha
    Molinari, Jean-Francois
    Ortiz, Michael
    Garcia-Suarez, Joaquin
    MECHANICS OF MATERIALS, 2023, 180
  • [26] DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits
    Sikora, Klaudia M.
    Magee, David A.
    Berkowicz, Erik W.
    Berry, Donagh P.
    Howard, Dawn J.
    Mullen, Michael P.
    Evans, Ross D.
    MacHugh, David E.
    Spillane, Charles
    BMC GENETICS, 2011, 12
  • [27] Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds
    Fang, Lingzhao
    Sahana, Goutam
    Ma, Peipei
    Su, Guosheng
    Yu, Ying
    Zhang, Shengli
    Lund, Mogens Sando
    Sorensen, Peter
    BMC GENOMICS, 2017, 18 : 604
  • [28] An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems
    Wang, RongXi
    Gao, Xu
    Gao, JianMin
    Gao, ZhiYong
    Chen, Kun
    Peng, CaiYuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (01) : 1 - 13
  • [29] Hierarchical biogeographical processes largely explain the genomic divergence pattern in a species complex of sea anemones (Metridioidea: Sagartiidae: Anthothoe)
    Spano, Carlos
    Haussermann, Vreni
    Acuna, Fabian
    Griffiths, Charles
    Seeb, Lisa
    Gomez-Uchida, Daniel
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 127 : 217 - 228
  • [30] Human Genome Polymorphisms and Computational Intelligence Approach Revealed a Complex Genomic Signature for COVID-19 Severity in Brazilian Patients
    Pastor, Andre Filipe
    Docena, Cassia
    Rezende, Antonio Mauro
    da Silva Oliveira, Flavio Rosendo
    Sena, Marilia de Albuquerque
    Lins de Morais, Clarice Neuenschwander
    Bresani-Salvi, Cristiane Campello
    Silva Vasconcelos, Luydson Richardson
    Campelo Valenca, Kennya Danielle
    Mariz, Carolline de Araujo
    Brito, Carlos
    Fonseca, Claudio Duarte
    Braga, Cynthia
    de Souza Reis, Christian Robson
    de Azevedo Marques, Ernesto Torres
    Acioli-Santos, Bartolomeu
    VIRUSES-BASEL, 2023, 15 (03):