The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes

被引:121
作者
Xun, S. [1 ]
Song, X. [1 ]
Wang, L. [1 ]
Grass, M. E. [2 ]
Liu, Z. [2 ]
Battaglia, V. S. [1 ]
Liu, G. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
LITHIUM-ION-BATTERIES; THIN-FILM ELECTRODE; RECHARGEABLE BATTERIES; ANODE MATERIAL; SILICON; REDUCTION; STORAGE; CARBON;
D O I
10.1149/2.007112jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study controllably reduces the silicon dioxide (SiO2) layer on Si nanoparticles and evaluates its effect on the performance of Si nanoparticle-based electrodes in Li-ion batteries. Various thicknesses of this native oxide are present on Si nanoparticles generated by chemical vapor deposition (CVD) due to the process conditions and exposure to oxygen during storage. This layer can be effectively reduced by hydrofluoric acid (HF) etching, which results in improved electrochemical performance over as-received samples. As-received Si sample has a higher first-cycle capacity loss than that of the etched Si samples, when the capacity loss is normalized to the surface area of the Si particles. Spectroscopic analysis reveals that when the Si electrode is held at a low potential, the oxide layer can be converted to a more stable silicate form due to the irreversible consumption of lithium species in the cell. The thick SiO2 surface layer also isolates the Si core from lithium-ion alloying; therefore, the as-received Si nanoparticles deliver a lower specific capacity than their etched counterpart. Incomplete lithiation of the as-received Si particles is confirmed by transmission electron microscopy, which shows that nanocrystalline Si domains remain after cycling. The surface insulating effects of SiO2 also cause high impedance in the Si electrode. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.007112jes] All rights reserved.
引用
收藏
页码:A1260 / A1266
页数:7
相关论文
共 26 条
[1]   Electrochemically controlled transport of lithium through ultrathin SiO2 -: art. no. 023516 [J].
Ariel, N ;
Ceder, G ;
Sadoway, DR ;
Fitzgerald, EA .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (02)
[2]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[3]   Controlling Diffusion of Lithium in Silicon Nanostructures [J].
Chan, Tzu-Liang ;
Chelikowsky, James R. .
NANO LETTERS, 2010, 10 (03) :821-825
[4]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[5]  
D'Amato R., 2008, 2008 GLOB ROADM CER, P597
[6]   Improvement of cyclability of Si as anode for Li-ion batteries [J].
Ding, Ning ;
Xu, Jing ;
Yao, Yaxuan ;
Wegner, Gerhard ;
Lieberwirth, Ingo ;
Chen, Chunhua .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :644-651
[7]   Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy [J].
Enta, Yoshiharu ;
Mun, Bongjin S. ;
Rossi, Massimiliano ;
Ross, Philip N., Jr. ;
Hussain, Zahid ;
Fadley, Charles S. ;
Lee, Ki-Suk ;
Kim, Sang-Koog .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[8]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197
[9]   Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries [J].
Guo, Bingkun ;
Shu, Jie ;
Wang, Zhaoxiang ;
Yang, Hong ;
Shi, Lihong ;
Liu, Yinong ;
Chen, Liquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1876-1878
[10]  
Hofman R, 1996, SURF INTERFACE ANAL, V24, P1, DOI 10.1002/(SICI)1096-9918(199601)24:1<1::AID-SIA73>3.0.CO