Equilibrium measures of the natural extension of β-shifts

被引:0
作者
Pfister, C-E [1 ]
Sullivan, W. G. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Fac Basic Sci, Sect Math, CH-1015 Lausanne, Switzerland
[2] UCD, Sch Math & Stat, Dublin 4, Ireland
关键词
beta-shifts; symbolic dynamics; equilibrium measures; weak Gibbs measures; WEAK GIBBS MEASURES; STATES;
D O I
10.1017/etds.2021.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a necessary and sufficient condition on beta of the natural extension of a beta-shift, so that any equilibrium measure for a function of bounded total oscillations is a weak Gibbs measure.
引用
收藏
页码:2415 / 2430
页数:16
相关论文
共 12 条
  • [1] Bowen R, 2008, LECT NOTES MATH, V470, P1, DOI 10.1007/978-3-540-77695-6
  • [2] LARGE DEVIATIONS FOR SYSTEMS WITH NON-UNIFORM STRUCTURE
    Climenhaga, Vaughn
    Thompson, Daniel J.
    Yamamoto, Kenichiro
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4167 - 4192
  • [3] EQUIVALENCE OF GIBBS AND EQUILIBRIUM STATES FOR HOMEOMORPHISMS SATISFYING EXPANSIVENESS AND SPECIFICATION
    HAYDN, NTA
    RUELLE, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (01) : 155 - 167
  • [4] Parry W., 1960, ACTA MATH ACAD SCI H, V11, P401, DOI [10.1007/BF02020954, DOI 10.1007/BF02020954]
  • [5] Asymptotic decoupling and weak Gibbs measures for finite alphabet shift spaces
    Pfister, C-E
    Sullivan, W. G.
    [J]. NONLINEARITY, 2020, 33 (09) : 4799 - 4817
  • [6] Weak Gibbs measures and large deviations
    Pfister, C-E
    Sullivan, W. G.
    [J]. NONLINEARITY, 2018, 31 (01) : 49 - 53
  • [7] Large deviations estimates for dynamical systems without the specification property.: Application to the β-shifts
    Pfister, CE
    Sullivan, WG
    [J]. NONLINEARITY, 2005, 18 (01) : 237 - 261
  • [8] Renyi A., 1957, Acta Math. Acad. Sci. Hungar., V8, P477, DOI DOI 10.1007/BF02020331
  • [9] Rockafellar R. T., 1970, CONVEX ANAL
  • [10] Ruelle D, 1978, ENCY MATH ITS APPL, V5