Computationally efficient physics-based compact CNTFET model for circuit design

被引:72
作者
Fregonese, Sebastien [1 ]
d'Honincthun, Hugues Cazin [2 ,3 ]
Goguet, Johnny [1 ]
Maneux, Cristell [1 ]
Zimmer, Thomas [1 ]
Bourgoin, Jean-Philippe [3 ]
Dollfus, Philippe [2 ]
Galdin-Retailleau, Sylvie [2 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5218, F-33405 Talence, France
[2] Univ Paris 11, CNRS, UMR 8622, Inst Elect Fondamentale, F-91405 Orsay, France
[3] CEA Saclay, Mol Elect Lab, CEA DSM IRAMIS SPEC, F-91191 Gif Sur Yvette, France
关键词
carbon nanotube; CNTFET; compact modeling; Monte Carlo simulation; technological dispersion; transistor;
D O I
10.1109/TED.2008.922494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a computationally efficient physics-based compact model designed for the conventional CNTFET featuring a MOSFET-like operation. A large part of its novelty lies on the implementation of a new analytical model of the channel charge. In addition, Boltzmann Monte Carlo (MC) simulation is performed with the challenge to cross-link this simulation technique to the compact modeling formulation. The comparison of the electrical characteristics obtained from the MC simulation and from the compact modeling demonstrates the compact model accuracy within its range of validity. Then, from a study of the CNT diameter dispersion for three technological processes, the compact model allows us to determine the CNTFET threshold voltage distribution and to evaluate the resulting dispersion of the propagation delay from the simulation of a ring oscillator.
引用
收藏
页码:1317 / 1327
页数:11
相关论文
共 31 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS, P378
[2]  
[Anonymous], RES J MICROBIOL, DOI DOI 10.1007/S00418-006-0143-Z
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Carbon nanotube electronics [J].
Avouris, P ;
Appenzeller, J ;
Martel, R ;
Wind, SJ .
PROCEEDINGS OF THE IEEE, 2003, 91 (11) :1772-1784
[5]   Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst [J].
Bachilo, SM ;
Balzano, L ;
Herrera, JE ;
Pompeo, F ;
Resasco, DE ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11186-11187
[6]   An RF circuit model for carbon nanotubes [J].
Burke, PJ .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (01) :55-58
[7]   Method for predicting fT for carbon nanotube FETs [J].
Castro, LC ;
John, DL ;
Pulfrey, DL ;
Pourfath, M ;
Gehring, A ;
Kosina, H .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (06) :699-704
[8]   Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes -: art. no. 172112 [J].
d'Honincthun, HC ;
Galdin-Retailleau, S ;
Sée, J ;
Dollfus, P .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[9]   Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance [J].
d'Honincthun, Hugues Cazin ;
Galdin-Retailleau, Sylvie ;
Bournel, Arnaud ;
Dollfus, Philippe ;
Bourgoin, Jean-Philippe .
COMPTES RENDUS PHYSIQUE, 2008, 9 (01) :67-77
[10]   Effect of discrete impurities on electron transport in ultrashort MOSFET using 3-D MC simulation [J].
Dollfus, P ;
Bournel, A ;
Galdin, S ;
Barraud, S ;
Hesto, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (05) :749-756