Existence and uniqueness of solutions for two classes of functional equations arising in dynamic programming

被引:21
作者
Liu, Ze-Cling [3 ]
Kang, Shin Min [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Chinju 660701, South Korea
[3] Liaoning Normal Univ, Dept Math, Dalian 116029, Peoples R China
关键词
functional equation; dynamic programming; fixed point; successive approximation; nonexpansive mapping;
D O I
10.1007/s10255-007-0363-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the existence, uniqueness and iterative approximation of solutions for two classes of functional equations arising in dynamic programming of multistage decision processes. The results presented here extend, and unify the corresponding results due to Bellman, Bhakta and Choudhury, Bhakta and Mitra, Liu and others.
引用
收藏
页码:195 / 208
页数:14
相关论文
共 20 条
[1]   DYNAMIC-PROGRAMMING AND MAXIMUM PRINCIPLE FOR DISCRETE GOURSAT SYSTEMS [J].
BELBAS, SA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 161 (01) :57-77
[2]  
BELLMAN B, 1978, AEQUATIONES MATH, V17, P1
[3]   A TECHNIQUE FOR THE REDUCTION OF DIMENSIONALITY IN DYNAMIC-PROGRAMMING [J].
BELLMAN, R ;
ROOSTA, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 88 (02) :543-546
[4]  
Bellman R., 1957, DYNAMIC PROGRAMMING
[5]  
Bellman R., 1973, Methods of Nonlinear Analysis, V61-I
[6]  
BHAKTA PC, 1984, J MATH ANAL APPL, V98, P348, DOI 10.1016/0022-247X(84)90254-3
[7]   SOME EXISTENCE THEOREMS FOR FUNCTIONAL-EQUATIONS ARISING IN DYNAMIC-PROGRAMMING .2. [J].
BHAKTA, PC ;
CHOUDHURY, SR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 131 (01) :217-231
[8]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[9]   COUPLED FIXED-POINTS FOR MIXED MONOTONE CONDENSING OPERATORS AND AN EXISTENCE THEOREM OF THE SOLUTIONS FOR A CLASS OF FUNCTIONAL-EQUATIONS ARISING IN DYNAMIC-PROGRAMMING [J].
CHANG, SS ;
MA, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (02) :468-479
[10]  
Huang N. J., 1997, INT J MATH MATH SCI, V20, P673, DOI [10.1155/S0161171297000926, DOI 10.1155/S0161171297000926]