New interaction solutions of the similarity reduction for the integrable (2+1)-dimensional Boussinesq equation

被引:5
作者
Hu, Hengchun [1 ]
Li, Xiaodan [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2022年 / 36卷 / 01期
关键词
New integrable (2+1)-dimensional Boussinesq equation; nonlocal symmetry; symmetry reduction; interaction solution; NONLOCAL SYMMETRY; BACKLUND TRANSFORMATION; EXPANSION METHOD; CRE SOLVABILITY;
D O I
10.1142/S0217979222500011
中图分类号
O59 [应用物理学];
学科分类号
摘要
The nonlocal symmetry of the new integrable (2 + 1)-dimensional Boussinesq equation is studied by the standard truncated Painleve expansion. This nonlocal symmetry can be localized to the Lie point symmetry of the prolonged system by introducing two auxiliary dependent variables. The corresponding finite symmetry transformation and similarity reduction related to the nonlocal symmetry of the new integrable (2 + 1)-dimensional Boussinesq equation are studied. The rational solution, the triangle solution, two solitoff-interaction solution and the soliton-cnoidal interaction solutions for the new (2 + 1)-dimensional Boussinesq equation are presented analytically and graphically by selecting the proper arbitrary constants.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[2]  
Cao YL, 2018, NONLINEAR DYNAM, V91, P2593, DOI 10.1007/s11071-017-4033-9
[3]  
Chen J, 2007, COMMUN THEOR PHYS, V48, P877
[4]   Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation [J].
Gao, Xiao Nan ;
Lou, S. Y. ;
Tang, Xiao Yan .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]   MORE NONLOCAL SYMMETRIES OF THE KDV EQUATION [J].
GUTHRIE, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (18) :L905-L908
[7]   Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation [J].
Hu, Heng-Chun ;
Liu, Fei-Yan .
CHINESE PHYSICS B, 2020, 29 (04)
[8]   Nonlocal Symmetry and Consistent Tanh Expansion Method for the Coupled Integrable Dispersionless Equation [J].
Hu, Hengchun ;
Hu, Xiao ;
Feng, Bao-Feng .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (03) :235-240
[9]   Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation [J].
Hu, Xiao-Rui ;
Lou, Sen-Yue ;
Chen, Yong .
PHYSICAL REVIEW E, 2012, 85 (05)
[10]  
Huang LL, 2018, NONLINEAR DYNAM, V92, P221, DOI 10.1007/s11071-018-4051-2