Impact of metal nanoparticles on biogas production from poultry litter

被引:102
作者
Hassanein, Amro [1 ,2 ]
Lansing, Stephanie [1 ]
Tikekar, Rohan [3 ]
机构
[1] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA
[2] Arish Univ, Fac Environm Agr Sci, North Sinai, Egypt
[3] Univ Maryland, Dept Nutr & Food Sci, College Pk, MD 20742 USA
关键词
Anaerobic digestion; Nanotechnology; Methane; Hydrogen sulfide; WASTE-ACTIVATED-SLUDGE; IRON-OXIDE NANOPARTICLES; ANAEROBIC-DIGESTION; METHANE PRODUCTION; METHANOGENIC ACTIVITY; HYDROGEN-SULFIDE; REMOVAL; STABILIZATION; BROILER; NZVI;
D O I
10.1016/j.biortech.2018.12.048
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The effects of metal nanoparticle (NP) addition during anaerobic digestion (AD) of poultry litter was tested using two sequential experiments: Exp. A) four NPs (Fe, Ni, Co, and Fe3O4) at three concentrations; and Exp. B) NP combinations (Fe, Ni, and Co) at four concentrations. Scanning electronic microscopy (SEM) and elemental analysis were used to confirm NP inclusion after dispersion (before AD) and track nanoparticles post-AD, and new technique for NP extraction post-AD was developed. Before AD, NPs ranged from 30.0 to 80.9 nm for Fe, Ni, and Co, and 94.3 to 400 nm for Fe3O4. Methane production increased with NPs addition compared to poultry litter-only, with the highest increases observed with NPs concentrations (in mg/L) of 12 Ni (38.4% increase), 5.4 Co (29.7% increase), 100 Fe (29.1% increase), and 15 Fe3O4 (27.5% increase). Nanoparticle mixtures greatly decreased H2S production. The SEM post-AD detected Fe, Ni, and Fe3O4 at concentrations >= 100 mg/L.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 40 条
[1]   Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure [J].
Abdelsalam, E. ;
Samer, M. ;
Attia, Y. A. ;
Abdel-Hadi, M. A. ;
Hassan, H. E. ;
Badr, Y. .
ENERGY, 2017, 120 :842-853
[2]   Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry [J].
Abdelsalam, E. ;
Samer, M. ;
Attia, Y. A. ;
Abdel-Hadi, M. A. ;
Hassan, H. E. ;
Badr, Y. .
RENEWABLE ENERGY, 2016, 87 :592-598
[3]   Improved methane fermentation of chicken manure via ammonia removal by biogas recycle [J].
Abouelenien, Fatma ;
Fujiwara, Wataru ;
Namba, Yuzaburo ;
Kosseva, Maria ;
Nishio, Naomichi ;
Nakashimada, Yutaka .
BIORESOURCE TECHNOLOGY, 2010, 101 (16) :6368-6373
[4]   Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge [J].
Altas, Levent .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) :1551-1556
[5]  
[Anonymous], 2005, Standard methods for the examination of water and waste- water
[6]   Applications of materials as additives in anaerobic digestion technology [J].
Arif, Sania ;
Liaquat, Rabia ;
Adil, Manal .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 97 :354-366
[7]   Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production [J].
Casals, Eudald ;
Barrena, Raquel ;
Garcia, Ana ;
Gonzalez, Edgar ;
Delgado, Lucia ;
Busquets-Fite, Marti ;
Font, Xavier ;
Arbiol, Jordi ;
Glatzel, Pieter ;
Kvashnina, Kristina ;
Sanchez, Antoni ;
Puntes, Victor .
SMALL, 2014, 10 (14) :2801-2808
[8]   Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter [J].
Costa, J. C. ;
Barbosa, S. G. ;
Alves, M. M. ;
Sousa, D. Z. .
BIORESOURCE TECHNOLOGY, 2012, 111 :141-147
[9]   Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane [J].
Demirel, B. ;
Scherer, P. .
BIOMASS & BIOENERGY, 2011, 35 (03) :992-998
[10]   Economic analysis of microaerobic removal of H2S from biogas in full-scale sludge digesters [J].
Diaz, I. ;
Ramos, I. ;
Fdz-Polanco, M. .
BIORESOURCE TECHNOLOGY, 2015, 192 :280-286