Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT)

被引:239
作者
Poole, JC [1 ]
Andrews, LG [1 ]
Tollefsbol, TO [1 ]
机构
[1] Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35294 USA
关键词
telomerase; human telomerase reverse transcriptase (hTERT); gene regulation; telomeres; cancer;
D O I
10.1016/S0378-1119(01)00440-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent interest in the regulation of telomerase, the enzyme that maintains chromosomal termini, has lead to the discovery and characterization of the catalytic subunit of telomerase, hTERT. Many studies have suggested that the transcription of hTERT represents the rate-limiting step in telomerase expression and key roles for hTERT have been implied in cellular aging, immortalization, and transformation. Before the characterization of the promoter of hTERT in 1999, regulatory mechanisms suggested for this gene were limited to speculation. The successful cloning and characterization of the hTERT 5' gene regulatory region has enabled its formal investigation and analysis of potential mechanisms controlling hTERT expression. Although these studies have provided important information about hTERT gene regulation, there has been some confusion regarding the nucleotide boundaries of this region, the location, number, and importance of various transcription factor binding motifs, and the results of promoter activity assays. We feel that this uncertainty, combined with the sheer volume of recent publications on hTERT regulation, calls for consolidation and review. In this analysis we examine recent advances in the regulation of the hTERT gene and attempt to resolve discrepancies resulting from the nearly simultaneous nature of publications in this fast-moving area. Additionally, we aim to summarize the extant knowledge of hTERT gene regulation and its role in important biological processes such as cancer and aging. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 122 条
[1]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[2]   Telomerase and cancer: Revisiting the telomere hypothesis [J].
Autexier, C ;
Greider, CW .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (10) :387-391
[3]   A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION [J].
AYER, DE ;
EISENMAN, RN .
GENES & DEVELOPMENT, 1993, 7 (11) :2110-2119
[4]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[5]  
Bestilny LJ, 1996, CANCER RES, V56, P3796
[6]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[7]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[8]  
BOISCLAIR YR, 1993, J BIOL CHEM, V268, P24892
[9]   REPRESSION OF GENES BY DNA METHYLATION DEPENDS ON CPG DENSITY AND PROMOTER STRENGTH - EVIDENCE FOR INVOLVEMENT OF A METHYL-CPG BINDING-PROTEIN [J].
BOYES, J ;
BIRD, A .
EMBO JOURNAL, 1992, 11 (01) :327-333
[10]   TELOMERASE ACTIVITY IN NORMAL AND MALIGNANT HEMATOPOIETIC-CELLS [J].
BROCCOLI, D ;
YOUNG, JW ;
DELANGE, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9082-9086