Numerical passage from radiative heat transfer to nonlinear diffusion models

被引:51
作者
Klar, A
Schmeiser, C
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Vienna Tech Univ, Inst Angew & Numer Math, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
radiative heat transfer; asymptotic analysis; nonlinear diffusion limit; Milne problem; asymptotic preserving methods; numerical methods for stiff equations;
D O I
10.1142/S0218202501001082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radiative heat transfer equations including heat conduction are considered in the small mean free path limit. Rigorous results on the asymptotic procedure leading to the equilibrium diffusion equation for the temperature are given. Moreover, the nonlinear Milne problem describing the boundary layer is investigated and an existence result is proven. An asymptotic preserving scheme for the radiative transfer equations with the diffusion scaling is developed. The scheme is based on the asymptotic analysis. It works uniformly for all ranges of mean free paths. Numerical results for different physical situations are presented.
引用
收藏
页码:749 / 767
页数:19
相关论文
共 23 条
[1]   THE NONACCRETIVE RADIATIVE-TRANSFER EQUATIONS - EXISTENCE OF SOLUTIONS AND ROSSELAND APPROXIMATION [J].
BARDOS, C ;
GOLSE, F ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) :434-460
[2]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[3]   THE ROSSELAND APPROXIMATION FOR THE RADIATIVE-TRANSFER EQUATIONS [J].
BARDOS, C ;
GOLSE, F ;
PERTHAME, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) :691-721
[4]  
BOBYLEV I, 1996, TRANSPORT THEORY STA, V25, P175
[5]   Uniformly accurate schemes for hyperbolic systems with relaxation [J].
Caflisch, RE ;
Jin, S ;
Russo, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :246-281
[6]  
Cercignani C, 1994, MATH THEORY DILUTE G
[7]   Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations [J].
Jin, S ;
Pareschi, L ;
Toscani, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2405-2439
[8]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276
[9]  
JIN S, 1993, TRANSPORT THEOR STAT, V22, P739
[10]   A numerical method for kinetic semiconductor equations in the drift-diffusion limit [J].
Klar, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1696-1712