A remark on nonlocal Neumann conditions for the fractional Laplacian

被引:10
作者
Abatangelo, Nicola [1 ]
机构
[1] Goethe Univ Frankfurt Main, Inst Math, Robert Meyer Str 10, D-60325 Frankfurt, Germany
关键词
Fractional Laplacian; Nonlocal normal derivative; Nonlocal Neumann conditions; Regional Laplacian;
D O I
10.1007/s00013-020-01440-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how nonlocal boundary conditions of Robin type can be encoded in the pointwise expression of the fractional operator. Notably, the fractional Laplacian of functions satisfying homogeneous nonlocal Neumann conditions can be expressed as a regional operator with a kernel having logarithmic behaviour at the boundary.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 5 条
[1]  
Abatangelo N., 2019, SPRINGER INDAM SER, V33, P1
[2]   Censored stable processes [J].
Bogdan, K ;
Burdzy, K ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (01) :89-152
[3]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62
[4]   Nonlocal problems with Neumann boundary conditions [J].
Dipierro, Serena ;
Ros-Oton, Xavier ;
Valdinoci, Enrico .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (02) :377-416
[5]   Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions [J].
Leonori, Tommaso ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana ;
Soria, Fernando .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) :593-619