Flexible implementations of group sequential stopping rules using constrained boundaries

被引:23
作者
Burington, BE [1 ]
Emerson, SS [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
clinical trial; error spending function; group sequential; interim analyses; monitoring; stopping rule;
D O I
10.1111/j.0006-341X.2003.00090.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Group sequential stopping rules are often used during the conduct of clinical trials in order to attain more ethical treatment of patients and to better address efficiency concerns. Because the use of such stopping rules materially affects the frequentist operating characteristics of the hypothesis test, it is necessary to choose an appropriate stopping rule during the planning of the study. It is often the case, however, that the number and timing of interim analyses are not precisely known at the time of trial design, and thus the implementation of a particular stopping rule must allow for flexible determination of the schedule of interim analyses. In this article, we consider the use of constrained stopping boundaries in the implementation of stopping rules. We compare this approach when used on various scales for the test statistic. When implemented on the scale of boundary crossing probabilities, this approach is identical to the error spending function approach of Lan and DeMets (1983).
引用
收藏
页码:770 / 777
页数:8
相关论文
共 14 条
[1]   REPEATED SIGNIFICANCE TESTS ON ACCUMULATING DATA [J].
ARMITAGE, P ;
MCPHERSO.CK ;
ROWE, BC .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1969, 132 :235-&
[2]   AN IMPROVED METHOD FOR DERIVING OPTIMAL ONE-SIDED GROUP SEQUENTIAL-TESTS [J].
EALES, JD ;
JENNISON, C .
BIOMETRIKA, 1992, 79 (01) :13-24
[3]  
EMERSON S, 2000, S SEQTRIAL TECHNICAL
[4]   PARAMETER-ESTIMATION FOLLOWING GROUP SEQUENTIAL HYPOTHESIS-TESTING [J].
EMERSON, SS ;
FLEMING, TR .
BIOMETRIKA, 1990, 77 (04) :875-892
[5]  
EMERSON SS, 1996, AM STAT, V50, P182
[6]  
Jennison C., 2000, GROUP SEQUENTIAL MET
[7]  
KIM K, 1987, BIOMETRIKA, V74, P149, DOI 10.2307/2336029
[8]   A unifying family of group sequential test designs [J].
Kittelson, JM ;
Emerson, SS .
BIOMETRICS, 1999, 55 (03) :874-882
[9]   DISCRETE SEQUENTIAL BOUNDARIES FOR CLINICAL-TRIALS [J].
LAN, KKG ;
DEMETS, DL .
BIOMETRIKA, 1983, 70 (03) :659-663
[10]   MULTIPLE TESTING PROCEDURE FOR CLINICAL-TRIALS [J].
OBRIEN, PC ;
FLEMING, TR .
BIOMETRICS, 1979, 35 (03) :549-556