Integrability of the Nose-Hoover equation

被引:12
作者
Mandi, Adam [2 ,3 ]
Valls, Claudia [1 ]
机构
[1] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[3] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Nose-Hoover equation; Darboux integrability; Invariant algebraic surfaces; CANONICAL DYNAMICS; NONERGODICITY; OSCILLATOR;
D O I
10.1016/j.geomphys.2011.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the Nose-Hoover equation for a one dimensional oscillator (x) over dot = -y - xz, (y) over dot = x, (z) over dot = alpha(x(2) - 1). It models the interaction of a particle with a heat-bath. We contribute to the understanding of its global dynamics, or more precisely, to the topological structure of its orbits by studying the integrability problem. We prove that alpha = 0 is the only value of the parameter for which the system is integrable, and in this case we provide an explicit expression for its first integrals. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1348 / 1352
页数:5
相关论文
共 12 条
[1]   Generalization of Nose and Nose-Hoover isothermal dynamics [J].
Branka, AC ;
Wojciechowski, KW .
PHYSICAL REVIEW E, 2000, 62 (03) :3281-3292
[2]   Multiplicity of invariant algebraic curves in polynomial vector fields [J].
Christopher, Colin ;
Llibre, Jaume ;
Pereira, Jorge Vitorio .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) :63-117
[3]   THE NOSE-HOOVER THERMOSTAT [J].
EVANS, DJ ;
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) :4069-4074
[4]   NOSE EQUATION FOR A ONE-DIMENSIONAL OSCILLATOR - RESONANCE ZONES AND THE TRANSITION TO LARGE-SCALE IRREGULAR DYNAMICS [J].
HAMILTON, I .
PHYSICAL REVIEW A, 1988, 38 (06) :3120-3123
[5]   A study of two novel self-exciting single-disk homopolar dynamos: Theory [J].
Hide, R ;
Skeldon, AC ;
Acheson, DJ .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1949) :1369-1395
[6]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[7]   Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator [J].
Legoll, Frederic ;
Luskin, Mitchell ;
Moeckel, Richard .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 184 (03) :449-463
[8]   Non-ergodicity of Nose-Hoover dynamics [J].
Legoll, Frederic ;
Luskin, Mitchell ;
Moeckel, Richard .
NONLINEARITY, 2009, 22 (07) :1673-1694
[9]  
Llibre J., 2004, Handbook of Differential Equations, Ordinary Differential Equations, P437
[10]   A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J].
NOSE, S .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :511-519