High-Performance Li-O2 Batteries with Controlled Li2O2 Growth in Graphene/Au-Nanoparticles/Au-Nanosheets Sandwich

被引:55
作者
Wang, Guoqing [1 ]
Tu, Fangfang [1 ]
Xie, Jian [1 ,2 ]
Du, Gaohui [3 ]
Zhang, Shichao [4 ]
Cao, Gaoshao [2 ]
Zhao, Xinbing [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Normal Univ, Inst Phys Chem, Jinhua 321004, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-AIR BATTERIES; CATHODE CATALYST; CARBON ELECTRODE; LONG-LIFE; CHALLENGES; OXIDE; DEPOSITION; REACTIVITY; TRANSPORT; EVOLUTION;
D O I
10.1002/advs.201500339
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The working of nonaqueous Li-O-2 batteries relies on the reversible formation/decomposition of Li2O2 which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of Li2O2 is a prerequisite for high performance of Li-O-2 batteries. In this work, a sandwich-structured catalytic cathode is designed: graphene/Au-nanoparticles/Au-nanosheets (G/Au-NP/Au-NS) that enables controlled growth of Li2O2 spatially and structurally. It is found that thin-layer Li2O2 (below 10 nm) can grow conformally on the surface of Au NPs confined in between graphene and Au NSs. This unique crystalline behavior of Li2O2 effectively relieves or defers the electrode deactivation with Li2O2 accumulation and largely reduces the contact of Li2O2 with graphene and electrolyte. As a result, Li-O-2 batteries with the G/Au-NP/Au-NS cathode exhibit superior electrochemical performance. A stable cycling of battery can last 300 times at 400 mA g(-1) when the capacity is limited at 500 mAh g(-1). This work provides a practical design of catalytic cathodes capable of controlling Li2O2 growth.
引用
收藏
页数:7
相关论文
共 67 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Non-Aqueous and Hybrid Li-O2 Batteries [J].
Black, Robert ;
Adams, Brian ;
Nazar, L. F. .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :801-815
[3]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]  
Cao R. G., 2014, ADV ENERGY MATER, V2, P816
[6]   A Carbon- and Binder-Free Nanostructured Cathode for High-Performance Nonaqueous Li-O2 Battery [J].
Chang, Yueqi ;
Dong, Shanmu ;
Ju, Yuhang ;
Xiao, Dongdong ;
Zhou, Xinhong ;
Zhang, Lixue ;
Chen, Xiao ;
Shang, Chaoqun ;
Gu, Lin ;
Peng, Zhangquan ;
Cui, Guanglei .
ADVANCED SCIENCE, 2015, 2 (08)
[7]   A free-standing-type design for cathodes of rechargeable Li-O2 batteries [J].
Cui, Yanming ;
Wen, Zhaoyin ;
Liu, Yu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4727-4734
[8]   Insight into Enhanced Cycling Performance of Li-O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes [J].
Dong, Shanmu ;
Wang, Shan ;
Guan, Jing ;
Li, Shanming ;
Lan, Zhenggang ;
Chen, Chun ;
Shang, Chaoqun ;
Zhang, Lixue ;
Wang, Xiaogang ;
Gu, Lin ;
Cui, Guanglei ;
Chen, Liquan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (03) :615-621
[9]   Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2-the discharge product in lithium-air batteries [J].
Dunst, A. ;
Epp, V. ;
Hanzu, I. ;
Freunberger, S. A. ;
Wilkening, M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2739-2752
[10]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262