A shrinkage predictive distribution for multivariate Normal observables

被引:60
作者
Komaki, F [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, Tokyo 1130033, Japan
关键词
invariance; James-Stein estimator; Kullback-Leibler divergence; Stein's prior; vague prior;
D O I
10.1093/biomet/88.3.859
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate shrinkage methods for constructing predictive distributions. We consider the multivariate Normal model with a known covariance matrix and show that there exists a shrinkage predictive distribution dominating the Bayesian predictive distribution based on the vague prior when the dimension is not less than three. Kullback-Leibler divergence from the true distribution to a predictive distribution is adopted as a loss function.
引用
收藏
页码:859 / 864
页数:6
相关论文
共 6 条
[1]  
AITCHISON J, 1975, BIOMETRIKA, V62, P547, DOI 10.1093/biomet/62.3.547
[2]  
GEISSRE S, 1993, PREDICTIVE INFERENCE
[3]   On asymptotic properties of predictive distributions [J].
Komaki, F .
BIOMETRIKA, 1996, 83 (02) :299-313
[4]   NOTE ON ESTIMATION OF PROBABILITY DENSITY FUNCTIONS [J].
MURRAY, GD .
BIOMETRIKA, 1977, 64 (01) :150-152
[5]  
NG VM, 1980, BIOMETRIKA, V67, P505, DOI 10.1093/biomet/67.2.505
[6]  
Stein C., 1974, P PRAG S AS STAT, VII, P345