An overview of robust methods in medical research

被引:44
|
作者
Farcomeni, Alessio [1 ]
Ventura, Laura [2 ]
机构
[1] Univ Roma La Sapienza, Dept Publ Hlth & Infect Dis, Rome, Italy
[2] Univ Padua, Dept Stat, Padua, Italy
关键词
breakdown point; influence function; likelihood methods; logistic regression; M-estimation; regression-scale model; R; ROC curve; student t-test; survival analysis; GENERALIZED LINEAR-MODELS; BOUNDED-INFLUENCE TESTS; REGRESSION-MODELS; COX REGRESSION; K-MEANS; ESTIMATORS; INFERENCE; RESIDUALS; DIAGNOSTICS; EFFICIENCY;
D O I
10.1177/0962280210385865
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Robust statistics is an extension of classical parametric statistics that specifically takes into account the fact that the assumed parametric models used by the researchers are only approximate. In this article, we review and outline how robust inferential procedures may routinely be applied in practice in the biomedical research. Numerical illustrations are given for the t-test, regression models, logistic regression, survival analysis and ROC curves, showing that robust methods are often more appropriate than standard procedures.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 50 条
  • [41] An Overview of Chlorophyll Fluorescence Measurement Process, Meters and Methods
    Vlaovic, Jelena
    Balen, Josip
    Grgic, Kresimir
    Zagar, Dingo
    Galic, Vlatko
    Simic, Domagoj
    PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST 2020), 2020, : 245 - 250
  • [42] Bayesian Methods for Medical Test Accuracy
    Broemeling, Lyle D.
    DIAGNOSTICS, 2011, 1 (01) : 1 - 35
  • [43] Chemically-assisted DNA transfection methods - An overview
    Bekic, Sofija S.
    Jovanovic-Santa, Suzana S.
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2023, 88 (11) : 1065 - 1087
  • [44] Overview of statistical methods usage in Indian anaesthesia publications
    Tyagi, Asha
    Garg, Devansh
    Mohan, Aparna
    Salhotra, Rashmi
    Vashisth, Ishita
    Agrawal, Ananya
    Deshpande, Sanika
    Deep, Sonali
    Das, Sacchidananda
    Malhotra, Rajeev K.
    Pradhan, Rajeev
    Panda, Aparajita
    INDIAN JOURNAL OF ANAESTHESIA, 2022, 66 (11) : 783 - 788
  • [45] Best Practice Guidelines for Propensity Score Methods in Medical Research: Consideration on Theory, Implementation, and Reporting. A Review
    Chen, Jeffrey W.
    Maldonado, David R.
    Kowalski, Brooke L.
    Miecznikowski, Kara B.
    Kyin, Cynthia
    Gornbein, Jeffrey A.
    Domb, Benjamin G.
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2022, 38 (02) : 632 - 642
  • [46] A review of robust regression in biomedical science research
    Varin, Sacha
    Panagiotakos, Demosthenes B.
    ARCHIVES OF MEDICAL SCIENCE, 2020, 16 (05) : 1267 - 1269
  • [47] Selected Methods of Categorical Data Analysis and Their Application in Consumer Behaviour Research
    Zamkova, Martina
    Strelec, Lubos
    Rojik, Stanislav
    Prokop, Martin
    Stolin, Radek
    38TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020), 2020, : 656 - 661
  • [48] Robust Multivariate Outlier Detection Methods for Environmental Data
    Alameddine, Ibrahim
    Kenney, Melissa A.
    Gosnell, Russell J.
    Reckhow, Kenneth H.
    JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 2010, 136 (11): : 1299 - 1304
  • [49] A Parametric Framework for the Comparison of Methods of Very Robust Regression
    Riani, Marco
    Atkinson, Anthony C.
    Perrotta, Domenico
    STATISTICAL SCIENCE, 2014, 29 (01) : 128 - 143
  • [50] ROBUST METHODS FOR PERSONAL-INCOME DISTRIBUTION MODELS
    VICTORIAFESER, MP
    RONCHETTI, E
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (02): : 247 - 258