Quasi-Cyclic Codes of Index 1 1/3

被引:22
作者
Fan, Yun [1 ]
Liu, Hualu [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-cyclic code; fractional index; relative minimum distance; random code; asymptotically good code; ASYMPTOTICALLY GOOD;
D O I
10.1109/TIT.2016.2602842
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce quasi-cyclic codes of index 1(1/3), and construct a class of such codes generated by pairs of polynomials. By investigating the pair of circulant matrices associated with the generator pair of polynomials, we obtain the generator matrix of any code of the class. Using a probabilistic method, we prove that, for any positive real number delta such that the asymptotic GV-bound at 2 delta is greater than 1/2, the probability that the relative minimal distance of the code in the class is greater than d is almost 1; and the probability that the rate of the code equals to 1/4 is also almost 1. An obvious consequence is that the quasicyclic codes of index 1(1/3) are asymptotically good.
引用
收藏
页码:6342 / 6347
页数:6
相关论文
共 15 条
[1]   Some randomized code constructions from group actions [J].
Bazzi, Louay A. J. ;
Mitter, Sanjoy K. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) :3210-3219
[2]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[3]   SOME RESULTS ON QUASI-CYCLIC CODES [J].
CHEN, CL ;
PETERSON, WW .
INFORMATION AND CONTROL, 1969, 15 (05) :407-&
[4]  
Chepyzhov V. V., 1992, PROBL PEREDACHI INF, V28, P39
[5]   Codes closed under arbitrary abelian group of permutations [J].
Dey, BK ;
Rajan, BS .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) :1-18
[6]  
Fan Y, 2008, ACTA MATH SCI, V28, P633
[7]   Thresholds of Random Quasi-Abelian Codes [J].
Fan, Yun ;
Lin, Liren .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) :82-90
[8]   GILBERT-VARSHAMOV BOUND FOR QUASI-CYCLIC CODES OF RATE 1-2 [J].
KASAMI, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (05) :679-679
[9]   Good self-dual quasi-cyclic codes exist [J].
Ling, S ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) :1052-1053
[10]   Is the class of cyclic codes asymptotically good? [J].
Martínez-Pérez, C ;
Willems, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :696-700