Occupation times of discrete-time fractional Brownian motion

被引:1
作者
Denker, Manfred [1 ]
Zheng, Xiaofei [1 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
关键词
Fractional Brownian motion; increment process; local time; Mittag-Leffler distribution; pointwise dual ergodicity; conditional local limit theorem;
D O I
10.1142/S0219493719500096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a conditional local limit theorem for discrete-time fractional Brownian motions (dfBm) with Hurst parameter 3/4 < H < 1. Using results from infinite ergodic theory, it is then shown that the properly scaled occupation time of dfBm converges to a Mittag-Leffler distribution.
引用
收藏
页数:17
相关论文
共 17 条
[1]   THE ASYMPTOTIC DISTRIBUTIONAL BEHAVIOR OF TRANSFORMATIONS PRESERVING INFINITE MEASURES [J].
AARONSON, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1981, 39 :203-234
[2]  
Aaronson J., 1997, Mathematical Surveys and Monographs, V50
[3]  
Aaronson J., 2001, Stoch. Dyn., V1, P193
[4]  
[Anonymous], 1982, GRUNDLEHREN MATH WIS
[5]  
BILODEAU M, 1999, SPRINGER TEXTS STAT
[6]  
CHUNG KL, 1953, P AM MATH SOC, V4, P560
[7]   Renyi-mixing of occupation times [J].
Csörgö, S .
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, :3-12
[8]  
Darling D. A., 1957, Trans. Amer. Math. Soc., V84, P444
[9]  
Denker M., STOCH P APPL
[10]  
Dobrusin R. L., 1955, Uspehi Mat. Nauk (N.S.), V10, P139