Optimal maximal gaps of Dirichlet eigenvalues of Sturm-Liouville operators

被引:4
作者
Guo, Shuyuan [1 ]
Meng, Gang [2 ]
Yan, Ping [1 ]
Zhang, Meirong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MEASURE DIFFERENTIAL-EQUATIONS; 1ST; 2; EIGENVALUES; SCHRODINGER-OPERATORS;
D O I
10.1063/5.0088097
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the gaps lambda(2n)(q) - lambda(1)(q) for the Dirichlet eigenvalues {lambda(m)(q)} of Sturm-Liouville operators with potentials q on the unit interval. By merely assuming that potentials q have the L-1 norm r, we will explicitly give the solutions to the maximization problems of lambda(2n)(q) - lambda(1)(q), where n is arbitrary. As a consequence, the solutions can lead to the optimal upper bounds for these eigenvalue gaps. The proofs are extensively based on the eigenvalue theory of measure differential equations in Meng and Zhang [J. Differ. Equations 254, 2196-2232 (2013)] and on the known results of the optimization problems for single eigenvalues of ordinary differential equations in Wei, Meng, and Zhang [J. Differ. Equations 247, 364-400 (2009)]. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 18 条
[1]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[2]  
[Anonymous], 1985, Ann. Sc. Norm. Super. Pisa, Cl. Sci.
[3]  
[Anonymous], 1998, An Introduction to Banach Space Theory, DOI 10.1007/978-1-4612-0603-3
[4]   Spectral gaps of 1-D Robin Schrodinger operators with single-well potentials [J].
Ashbaugh, Mark S. ;
Kielty, Derek .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
[5]  
ASHBAUGH MS, 1991, PAC J MATH, V147, P1
[6]   EIGENVALUE RATIOS FOR STURM-LIOUVILLE OPERATORS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :205-219
[7]   OPTIMAL LOWER BOUND FOR THE GAP BETWEEN THE 1ST 2 EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH SYMMETRIC SINGLE-WELL POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (02) :419-424
[8]  
Carter M., 2000, The Lebesgue-Stieltjes integral: an introduction
[9]   ESTIMATES OF THE GAPS BETWEEN CONSECUTIVE EIGENVALUES OF LAPLACIAN [J].
Chen, Daguang ;
Zheng, Tao ;
Yang, Hongcang .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) :293-311
[10]   Comparison Theorems for the Eigenvalue Gap of Schrodinger Operators on the Real Line [J].
Chen, Duo-Yuan ;
Huang, Min-Jei .
ANNALES HENRI POINCARE, 2012, 13 (01) :85-101