A lack-of-fit test for quantile regression

被引:115
作者
He, XM [1 ]
Zhu, LX
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
consistency; cusum process; empirical process; goodness-of fit; linear regression; local alternative; resampling;
D O I
10.1198/016214503000000963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an omnibus lack-of-fit test for linear or nonlinear quantile regression based on a cusum process of the gradient vector. The test does not involve nonparametric smoothing but is consistent for all nonparametric alternatives without any moment conditions on the regression error. In addition, the test is suitable for detecting the local alternatives of any order arbitrarily close to n(-1/2) from the null hypothesis. The limiting distribution of the proposed test statistic is non-Gaussian but can be characterized by a Gaussian process. We propose a simple sequential resampling scheme to carry out the test whose nominal levels are well approximated in our empirical study for small and modest sample sizes.
引用
收藏
页码:1013 / 1022
页数:10
相关论文
共 46 条
[1]  
[Anonymous], [No title captured]
[2]  
AZZALINI A, 1989, BIOMETRIKA, V76, P1
[3]   Asymptotic theory of integrated conditional moment tests [J].
Bierens, HJ ;
Ploberger, W .
ECONOMETRICA, 1997, 65 (05) :1129-1151
[4]  
BUCKLEY MJ, 1991, BIOMETRIKA, V78, P253
[5]   TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED SPLINE MODELS [J].
COX, D ;
KOH, E ;
WAHBA, G ;
YANDELL, BS .
ANNALS OF STATISTICS, 1988, 16 (01) :113-119
[6]  
EUBANK RL, 1993, BIOMETRIKA, V80, P89
[7]   TESTING THE GOODNESS OF FIT OF A LINEAR-MODEL VIA NONPARAMETRIC REGRESSION TECHNIQUES [J].
EUBANK, RL ;
SPIEGELMAN, CH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :387-392
[8]  
Fan JQ, 1996, J AM STAT ASSOC, V91, P674
[9]   Goodness-of-fit tests for parametric regression models [J].
Fan, JQ ;
Huang, LS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :640-652
[10]   Generalized likelihood ratio statistics and Wilks phenomenon [J].
Fan, JQ ;
Zhang, CM ;
Zhang, J .
ANNALS OF STATISTICS, 2001, 29 (01) :153-193