Firmly bonded graphene-silicon nanocomposites as high-performance anode materials for lithium-ion batteries

被引:26
|
作者
Chen, Yifan
Du, Ning [1 ]
Zhang, Hui
Yang, Deren
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
来源
RSC ADVANCES | 2015年 / 5卷 / 57期
关键词
SI NANOPARTICLES; FACILE SYNTHESIS; ELECTRODE; STORAGE; SPECTROSCOPY; PARTICLES; NANOWIRES; SHEETS; BINDER;
D O I
10.1039/c5ra05869d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the synthesis of firmly bonded reduced graphene oxide (RGO)@Si nanocomposites via the magnesiothermic reduction of graphene oxide (GO)@SiO2 nanocomposites. The uniform deposition of SiO2 layer on the GO nanosheets is achieved via controllable TEOS hydrolysis, which is a prerequisite for the synthesis of uniform RGO@Si nanocomposites. When used as an anode material for lithium-ion batteries, the as-synthesized RGO@Si nanocomposites show high reversible capacity and good cycling performance, which is better than bare Si nanoparticles and Si/RGO nanocomposites synthesized from physical blending Si nanoparticles and RGO nanosheets. It is believed that the improved electrochemical performance can be attributed to the novel uniform nanostructure and the introduction of RGO multilayers that can mitigate the volume expansion/contraction and enhance the electronic conductivity of Si anode materials.
引用
收藏
页码:46173 / 46180
页数:8
相关论文
共 50 条
  • [41] A Versatile Polymeric Precursor to High-Performance Silicon Composite Anode for Lithium-Ion Batteries
    Yang, Kai
    Yu, Zhihao
    Yu, Changcheng
    Zhu, Min
    Yang, Luyi
    Chen, Haibiao
    Pan, Feng
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [42] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [43] P25/graphene nanocomposites as a high-performance anode material for lithium ion batteries
    Xiao, Ying
    Qin, Jinwen
    Hu, Changwen
    Cao, Minhua
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (01) : 153 - 159
  • [44] Gelatin and sodium alginate derived carbon/silicon composites as high-performance anode materials for lithium-ion batteries
    Lin, Liyang
    Li, Mengjun
    Yan, Ying
    Tian, Yuanhao
    Qing, Juan
    Chen, Susu
    DALTON TRANSACTIONS, 2024, 53 (41) : 16871 - 16878
  • [45] High-performance silicon/carbon/graphite composites as anode materials for lithium ion batteries
    Yang, Xuelin
    Wen, Zhaoyin
    Xu, Xiaoxiong
    Lin, Bin
    Lin, Zuxiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (07) : A1341 - A1344
  • [46] Polyaniline encapsulated silicon nanocomposite as high-performance anode materials for lithium ion batteries
    Hua-Chao Tao
    Xue-Lin Yang
    Lu-Lu Zhang
    Shi-Bing Ni
    Journal of Solid State Electrochemistry, 2014, 18 : 1989 - 1994
  • [47] Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries
    Li, Qi
    Yu, Mo
    Huang, Yating
    Cai, Zhenfei
    Wang, Shuai
    Ma, Yangzhou
    Song, Guangsheng
    Yu, Zexin
    Yang, Weidong
    Wen, Cuie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 944
  • [48] Lithiation behavior of graphene-silicon composite as high performance anode for lithium-ion battery: A first principles study
    Zhou, Feng
    Liao, Ningbo
    Zhang, Miao
    Xue, Wei
    APPLIED SURFACE SCIENCE, 2019, 463 : 610 - 615
  • [49] Polyaniline encapsulated silicon nanocomposite as high-performance anode materials for lithium ion batteries
    Tao, Hua-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (07) : 1989 - 1994
  • [50] TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
    Chen, Zehua
    Gao, Yu
    Zhang, Qixiang
    Li, Liangliang
    Ma, Pengcheng
    Xing, Baolin
    Cao, Jianliang
    Sun, Guang
    Bala, Hari
    Zhang, Chuanxiang
    Zhang, Zhanying
    Zeng, Yanyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 774 : 873 - 878