Rigid realizations of graphs on small grids

被引:6
作者
Fekete, Z
Jordán, T
机构
[1] Eotvos Lorand Univ, Dept Operat Res, H-1117 Budapest, Hungary
[2] Commun Networks Lab, H-1117 Budapest, Hungary
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2005年 / 32卷 / 03期
基金
匈牙利科学研究基金会;
关键词
graph; rigidity; realization;
D O I
10.1016/j.comgeo.2005.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A framework (G, p) is a straight line realization of a graph G = (V, E) in R-2, given by a map p: V -> R-2. We prove that if (G, p) is an infinitesimally rigid framework then there is an infinitesimally rigid framework (G, q) for which the points q (v), v is an element of V (G), are distinct points of the k x k grid, where k = [root vertical bar V vertical bar - 1] + 9. We also show that such a framework on G can be constructed in O(vertical bar V vertical bar(3)) time. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 9 条
[1]  
Berg AR, 2003, LECT NOTES COMPUT SC, V2832, P78
[2]  
GRAVER J, 1993, AMS GRADUATE STUDIES, V2
[3]  
JACKSON B, IN PRESS J COMBIN B
[4]   GRAPHS AND RIGIDITY OF PLANE SKELETAL STRUCTURES [J].
LAMAN, G .
JOURNAL OF ENGINEERING MATHEMATICS, 1970, 4 (04) :331-&
[5]   FAST PROBABILISTIC ALGORITHMS FOR VERIFICATION OF POLYNOMIAL IDENTITIES [J].
SCHWARTZ, JT .
JOURNAL OF THE ACM, 1980, 27 (04) :701-717
[6]  
Tay T.-S., 1985, STRUCTURAL TOPOLOGY, V11, P21
[7]  
Whiteley W., 1992, MATROID APPL, V40, P1
[8]  
Whiteley W., 1996, Matroid Theory, V197, P171, DOI [DOI 10.1090/CONM/197/02540, 10.1090/conm/197/02540]
[9]  
Whiteley W., 2004, HDB DISCRETE COMPUTA, P1327