Null screen quasi-conformal hypersurfaces in semi-Riemannian manifolds and applications

被引:6
作者
Navarro, Matias [1 ]
Palmas, Oscar [2 ]
Solis, Didier A. [1 ]
机构
[1] Univ Autonoma Yucatan UADY, Fac Matemat, Tablaje 13615, Merida 97119, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Einstein hypersurfaces; isoparametric hypersurfaces; null hypersurfaces; LIGHT-LIKE HYPERSURFACES; SPACE;
D O I
10.1002/mana.201800494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of null hypersurfaces of a semi-Riemannian manifold, namely, screen quasi-conformal hypersurfaces, whose geometry may be studied through the geometry of its screen distribution. In particular, this notion allows us to extend some results of previous works to the case in which the sectional curvature of the ambient space is different from zero. As applications, we study umbilical, isoparametric and Einstein null hypersurfaces in Lorentzian space forms and provide several classification results.
引用
收藏
页码:1534 / 1553
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1973, Cambridge Monogr. Math. Phys.
[2]  
[Anonymous], 1992, Introducing Einstein's Relativity
[3]  
[Anonymous], 2007, NULL CURVES HYPERSUR
[4]  
[Anonymous], 1983, PURE APPL MATH AMST
[5]  
Atindogbe C., 2004, Int. J. Pure Appl. Math., V11, P421
[6]  
Atindogbe C., 2014, Afr. Diaspora J. Math., V16, P31
[7]   On the remarkable families of isoparametric hypersurfaces in spherical spaces. [J].
Cartan, E .
MATHEMATISCHE ZEITSCHRIFT, 1939, 45 :335-367
[8]  
CARTAN E, 1938, ANN MAT PUR APPL, V17, P177
[9]  
Cecil TE, 2015, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4939-3246-7
[10]  
DAJCZER M, 1990, MATH LECT SERIES, V13