A New Family of Mixed Methods for the Reissner-Mindlin Plate Model Based on a System of First-Order Equations

被引:11
作者
Behrens, Edwin M. [2 ]
Guzman, J. [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Concepcion, Chile
基金
美国国家科学基金会;
关键词
Finite element; Reissner-Mindlin; Biharmonic; Mixed method; Hybrid method; 2ND-ORDER ELLIPTIC PROBLEMS; ELEMENT EXTERIOR CALCULUS; WEAK STRESS SYMMETRY; FREE FINITE-ELEMENTS; GALERKIN METHOD; BOUNDARY-LAYER; ELASTICITY;
D O I
10.1007/s10915-010-9451-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mixed method for the biharmonic problem introduced in (Behrens and Guzman, SIAM J. Numer. Anal., 2010) is extended to the Reissner-Mindlin plate model. The Reissner-Mindlin problem is written as a system of first order equations and all the resulting variables are approximated. However, the hybrid form of the method allows one to eliminate all the variables and have a final system only involving the Lagrange multipliers that approximate the transverse displacement and rotation at the edges of the triangulation. Mixed finite element spaces for elasticity with weakly imposed symmetry are used to approximate the bending moment matrix. Optimal estimates independent of the plate thickness are proved for the transverse displacement, rotations and bending moments. A post-processing technique is provided for the displacement and rotations variables and we show numerically that they converge faster than the original approximations.
引用
收藏
页码:137 / 166
页数:30
相关论文
共 38 条
[1]   EQUILIBRIUM FINITE-ELEMENTS FOR THE LINEAR ELASTIC PROBLEM [J].
AMARA, M ;
THOMAS, JM .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :367-383
[2]   New locking-free mixed method for the Reissner mindlin thin plate model [J].
Amara, M ;
Capatina-Papaghiuc, D ;
Chatti, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1561-1582
[3]  
[Anonymous], MATH COMP
[4]  
[Anonymous], 2001, ISC0110MATH TEX A M
[5]  
Arnold D.N., 1989, ANAL COMPUTATIONAL M, P71
[6]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[7]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[8]   THE BOUNDARY-LAYER FOR THE REISSNER-MINDLIN PLATE MODEL [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :281-312
[9]   Asymptotic analysis of the boundary layer for the reissner-mindlin plate model [J].
Arnold, DN ;
Falk, RS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :486-514
[10]  
ARNOLD DN, 1993, RMA RES NOTES APPL M, V29, P287