Functional central limit theorem for random walks in random environment defined on regular trees

被引:0
作者
Collevecchio, Andrea [1 ]
Takei, Masato [2 ]
Uematsu, Yuma [3 ]
机构
[1] Monash Univ, Sch Math Sci, Melbourne, Vic, Australia
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa, Japan
[3] Yokohama Natl Univ, Grad Sch Engn, Dept Syst Integrat, Yokohama, Kanagawa, Japan
基金
澳大利亚研究理事会;
关键词
Random walks in random environment; Self-interacting random walks; Functional central limit theorem; REINFORCED RANDOM-WALK; TRANSIENT RANDOM-WALKS; LARGE DEVIATIONS;
D O I
10.1016/j.spa.2020.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on b-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform ellipticity assumptions. Our approach relies on regenerative levels, i.e. levels that are visited exactly once. On the way, we prove that the distance between consecutive regenerative levels have a geometrically decaying tail. In the second part of this paper, we apply our results to Linearly Edge-Reinforced Random Walk (LERRW) to prove FCLT when the process is defined on b-regular trees, with b >= 4, substantially improving the results of the first author (see Theorem 3 of Collevecchio (2006)). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:4892 / 4909
页数:18
相关论文
共 19 条
[1]   Transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :525-559
[2]   Large deviations for transient random walks in random environment on a Galton-Watson tree [J].
Aidekon, Elie .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :159-189
[3]   General random walk in a random environment defined on Galton-Watson trees [J].
Barbour, A. D. ;
Collevecchio, Andrea .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04) :1657-1674
[4]  
Bogachev L. V., 2006, Encycl. Math. Phys, V4, P353, DOI DOI 10.1016/B0-12-512666-2/00063-8
[5]   Limit theorems for reinforced random walks on certain trees [J].
Collevecchio, Andrea .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (01) :81-101
[6]   The Branching-Ruin Number and the Critical Parameter of Once-Reinforced Random Walk on Trees [J].
Collevecchio, Andrea ;
Kious, Daniel ;
Sidoravicius, Vladas .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (01) :210-236
[7]   BOUNDS ON THE SPEED AND ON REGENERATION TIMES FOR CERTAIN PROCESSES ON REGULAR TREES [J].
Collevecchio, Andrea ;
Schmitz, Tom .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (03) :1073-1101
[8]   Limit theorems for vertex-reinforced jump processes on regular trees [J].
Collevecchio, Andrea .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :1936-1962
[9]  
Coppersmith D., 1986, UNPUB
[10]   REINFORCED RANDOM-WALK [J].
DAVIS, B .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (02) :203-229