Inhibition of neuroblastoma-induced angiogenesis by fenretinide

被引:50
作者
Ribatti, D
Alessandri, G
Baronio, M
Raffaghello, L
Cosimo, E
Marimpietri, D
Montaldo, PG
De Falco, G
Caruso, A
Vacca, A
Ponzoni, M
机构
[1] Univ Bari, Policlin Bari, Dept Human Anat & Histol, I-70124 Bari, Italy
[2] Univ Brescia, Inst Microbiol, Brescia, Italy
[3] G Gaslini Childrens Hosp, Lab Oncol, Genoa, Italy
[4] Univ Bari, Dept Biomed Sci & Human Oncol, Bari, Italy
关键词
angiogenesis; anti-angiogenesis; fenretinide; neuroblastoma;
D O I
10.1002/ijc.1441
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Retinoids are a class of natural or synthetic compounds that participate in the control of cell proliferation, differentiation and fetal development. The synthetic retinoid fenretinide (HPR) inhibits carcinogenesis in various animal models. Retinoids have also been suggested to be effective inhibitors of angiogenesis. The effects of HPR on certain endothelial cell functions were investigated in vitro, and its effects on angiogenesis was studied in vivo, by using the chorioallantoic membrane (CAM) assay. HPR inhibited vascular endothelial growth factor- (VEGF-) and fibroblast growth factor-2- (FGF-2)-induced endothelial cell proliferation without affecting endothelial motility; moreover, HPR inhibited growth factor-induced angiogenesis in the CAM assay. Furthermore, a significant antiangiogenic potential of HPR has also been observed in neuroblastoma (NB) biopsy-induced angiogenesis in vivo. We previously demonstrated that supernatants derived from NB cell lines stimulated endothelial cell proliferation. In the present study, we found that this effect was abolished when NB cells were incubated in the presence of HPR. VEGF- and FGF-2-specific ELISA assays, performed on both NB cells derived from conditioned medium and cellular extracts, indicated no consistent effect of HPR on the level of these angiogenic cytokines. Moreover, RT-PCR analysis of VEGF- and FGF-2 gene expression confirmed the above lack of effect. HPR was also able to significantly repress the spontaneous growth of endothelial cells, requiring at least 48-72 hr of treatment with HPR, followed by a progressive accumulation of cells in G, at subsequent time points. Finally, immunohistochemistry experiments performed in the CAM assay demonstrated that endothelial staining of both VEGF receptor 2 and FGF-2 receptor-2 was reduced after implantation of HPR-loaded sponges, as compared to control CAMs. These data suggest that HPR exerts its antiangiogenic activity through both a direct effect on endothelial cell proliferative activity and an inhibitory effect on the responsivity of the endothelial cells to the proliferative stimuli mediated by angiogenic growth factors. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:314 / 321
页数:8
相关论文
共 54 条
  • [11] WHAT IS THE EVIDENCE THAT TUMORS ARE ANGIOGENESIS DEPENDENT
    FOLKMAN, J
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1990, 82 (01): : 4 - 6
  • [12] ANTI-ANGIOGENESIS - NEW CONCEPT FOR THERAPY OF SOLID TUMORS
    FOLKMAN, J
    [J]. ANNALS OF SURGERY, 1972, 175 (03) : 409 - &
  • [13] Gho YS, 1997, CANCER RES, V57, P3733
  • [14] HEDBORG F, 1995, AM J PATHOL, V146, P833
  • [15] CELLULAR DEATH IN NEUROBLASTOMA - IN-SITU CORRELATION OF APOPTOSIS AND BCL-2 EXPRESSION
    HOEHNER, JC
    HEDBORG, F
    WIKLUND, HJ
    OLSEN, L
    PAHLMAN, S
    [J]. INTERNATIONAL JOURNAL OF CANCER, 1995, 62 (01) : 19 - 24
  • [16] INGBER D, 1988, LAB INVEST, V59, P44
  • [17] INHIBITION OF VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED ANGIOGENESIS SUPPRESSES TUMOR-GROWTH INVIVO
    KIM, KJ
    LI, B
    WINER, J
    ARMANINI, M
    GILLETT, N
    PHILLIPS, HS
    FERRARA, N
    [J]. NATURE, 1993, 362 (6423) : 841 - 844
  • [18] TUMOR PROGRESSION OF HUMAN NEUROBLASTOMA-CELLS TAGGED WITH A LACZ MARKER GENE - EARLIEST EVENTS AT ECTOPIC INJECTION SITES
    KLEINMAN, NR
    LEWANDOWSKA, K
    CULP, LA
    [J]. BRITISH JOURNAL OF CANCER, 1994, 69 (04) : 670 - 679
  • [19] MECHANISM OF RETINOID-INDUCED ACTIVATION OF LATENT TRANSFORMING GROWTH-FACTOR-BETA IN BOVINE ENDOTHELIAL-CELLS
    KOJIMA, S
    RIFKIN, DB
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 1993, 155 (02) : 323 - 332
  • [20] KOJIMA S, 1986, BIOMED RES-TOKYO, V7, P155