Defect dissolution in strain-compensated stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition

被引:15
作者
Nuntawong, N [1 ]
Huang, S [1 ]
Jiang, YB [1 ]
Hains, CP [1 ]
Huffaker, DL [1 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
关键词
D O I
10.1063/1.2042638
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a highly effective growth technique to both dissolve large islands and prevent further defect propagation in closely spaced (15 nm) stacked quantum dot (QD) active regions while maintaining an emission wavelength > 1.3 mu m. Island dissolution is accomplished via an In flush, which is an AsH3 pause inserted into the growth sequence just after each QD layer is capped. The low V/III ratio enables the flushing of surface In atoms from the defect sites while the fully capped QDs remain intact. This technique eliminates the need for in situ annealing that activates the In flush in other growth scenarios and results in large emission blueshift. Strain propagation within the closely spaced QD stacks is reduced by GaP strain-compensation layers. Room-temperature photoluminescence confirms ground-state emission wavelength > 1.34 mu m. Atomic force microscopy and transmission electron microscopy confirm improved surface morphology and crystalline quality of stacked QD active regions. The resulting structures are suitable for long-wavelength lasers, especially vertical cavity surface-emitting laser applications in which high modal gain is attractive. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 14 条
[1]   Formation trends in quantum dot growth using metalorganic chemical vapor deposition [J].
El-Emawy, AA ;
Birudavolu, S ;
Wong, PS ;
Jiang, YB ;
Xu, H ;
Huang, S ;
Huffaker, DL .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (06) :3529-3534
[2]   Efficient high-temperature CW lasing operation of oxide-confined long-wavelength InAs quantum dot lasers [J].
Huang, XD ;
Stintz, A ;
Hains, CP ;
Liu, GT ;
Cheng, J ;
Malloy, KJ .
ELECTRONICS LETTERS, 2000, 36 (01) :41-42
[3]   Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers [J].
Huang, XD ;
Stintz, A ;
Li, H ;
Lester, LF ;
Cheng, J ;
Malloy, KJ .
APPLIED PHYSICS LETTERS, 2001, 78 (19) :2825-2827
[4]   1.24 μm InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine [J].
Kaiander, IN ;
Sellin, RL ;
Kettler, T ;
Ledentsov, NN ;
Bimberg, D ;
Zakharov, ND ;
Werner, P .
APPLIED PHYSICS LETTERS, 2004, 84 (16) :2992-2994
[5]   High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers [J].
Kim, SM ;
Wang, Y ;
Keever, M ;
Harris, JS .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (02) :377-379
[6]   1.3 μm luminescence and gain from defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapour deposition [J].
Ledentsov, NN ;
Maximov, MV ;
Bimberg, D ;
Maka, T ;
Torres, CMS ;
Kochnev, IV ;
Krestnikov, IL ;
Lantratov, VM ;
Cherkashin, NA ;
Musikhin, YM ;
Alferov, ZI .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (06) :604-607
[7]   Nanovoids in InGaAs/GaAs quantum dots observed by cross-sectional scanning tunneling microscopy [J].
Lenz, A ;
Eisele, H ;
Timm, R ;
Becker, SK ;
Sellin, RL ;
Pohl, UW ;
Bimberg, D ;
Dähne, M .
APPLIED PHYSICS LETTERS, 2004, 85 (17) :3848-3850
[8]   Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition [J].
Nuntawong, N ;
Xin, YC ;
Birudavolu, S ;
Wong, PS ;
Huang, S ;
Hains, CP ;
Huffaker, DL .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[9]   Effect of strain-compensation in stacked 1.3 μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition [J].
Nuntawong, N ;
Birudavolu, S ;
Hains, CP ;
Huang, S ;
Xu, H ;
Huffaker, DL .
APPLIED PHYSICS LETTERS, 2004, 85 (15) :3050-3052
[10]   Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit [J].
Park, SG ;
Spiekman, LH ;
Eiselt, M ;
Wiesenfeld, JM .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (03) :233-235