Deep Depthwise Separable Convolutional Network for Change Detection in Optical Aerial Images

被引:87
作者
Liu, Ruochen [1 ]
Jiang, Dawei [1 ]
Zhang, Langlang [1 ]
Zhang, Zetong [1 ]
机构
[1] Xidian Univ, Minist Educ, Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Feature extraction; Image segmentation; Training; Remote sensing; Optical imaging; Deep learning; Change detection; depthwise separable convolution; image segmentation; optical aerial images;
D O I
10.1109/JSTARS.2020.2974276
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, a remote sensing image change detection method based on depthwise separable convolution with U-Net is proposed, which omits the tedious steps of generating and analyzing the difference map in the traditional remote sensing image change detection method. First, two images having c-channel each can be specifically stacked into a 2c-channel image, and the change detection can be converted to an image segmentation problem, an improved full convolution network (FCN) called U-Net is exploited to directly separate the changing regions. Because the capability of the deep convolution network is proportional to the depth of the network and a deeper convolution network means the increase of the training parameters, we then replace the original convolution in FCN by the depthwise separable convolution, making the entire network lighter, while the model performs slightly better than the traditional convolution operation. Besides that, another innovation in our proposed method is to use a preference control loss function to meet the different needs of precision and recall rate. Experimental results validate the effectiveness and robustness of the proposed method.
引用
收藏
页码:1109 / 1118
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2015, P INT C LEARN REPR
[2]  
[Anonymous], 2016, REMOTE SENS-BASEL, DOI DOI 10.3390/RS8060506
[3]   Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model [J].
Benedek, Csaba ;
Sziranyi, Tamas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (10) :3416-3430
[4]   A Multilevel Parcel-Based Approach to Change Detection in Very High Resolution Multitemporal Images [J].
Bovolo, Francesca .
IEEE Geoscience and Remote Sensing Letters, 2009, 6 (01) :33-37
[5]  
Chinchor N., 1993, P MUC, P69, DOI DOI 10.3115/1072017.1072026
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]  
Daudt RC, 2018, INT GEOSCI REMOTE SE, P2115, DOI 10.1109/IGARSS.2018.8518015
[8]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[9]   Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet [J].
Gao, Feng ;
Dong, Junyu ;
Li, Bo ;
Xu, Qizhi .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) :1792-1796
[10]  
Glorot X., 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705