Metabolic engineering of Escherichia coli for acetaldehyde overproduction using pyruvate decarboxylase from Zymomonas mobilis

被引:13
作者
Balagurunathan, Balaji [1 ]
Tan, Lily [1 ]
Zhao, Hua [2 ]
机构
[1] ASTAR, Bioproc Engn Ctr, Inst Chem & Engn Sci, 1 Pesek Rd, Jurong Isl 627833, Singapore
[2] ASTAR, Ind Biotechnol Div, Inst Chem & Engn Sci, 1 Pesek Rd, Jurong Isl 627833, Singapore
关键词
Pyruvate decarboxylase; NADH oxidase; Acetaldehyde production; Acetoin; E; coli; SITE-DIRECTED MUTAGENESIS; ETHANOL; FERMENTATION;
D O I
10.1016/j.enzmictec.2017.09.012
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
For the sustainable production of acetaldehyde, a key raw-material for a large number of chemical products, microbial production is a promising alternative. We have engineered an Escherichia coli strain for acetaldehyde production from glucose by introducing the pyruvate decarboxylase (Pdc) from Zymomonas mobilis and NADH oxidase (Nox) from Lactococcus lactis. Acetaldehyde production was systematically improved by knocking out the competing metabolic pathways. Multiple knockout strains were created and a final acetaldehyde titre of 0.73 g/L was achieved using a quadruple knockout strain E. coli MC4100 Delta adhE Delta ldhA Delta frdC Delta ackA-pta. In addition to acetaldehyde, about 0.37 g/L acetoin was produced by these strains due to the additional carboligase activity exhibited by pyruvate decarboxylase resulting in a total carbon yield of 0.27 g/g glucose.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
[41]   Redox Cofactor Metabolic Engineering with Escherichia coli [J].
Wang Baiyun ;
Wang Xiaoyue ;
Wang Zhiwen ;
Chen Tao ;
Zhao Xueming .
PROGRESS IN CHEMISTRY, 2014, 26 (09) :1609-1618
[42]   An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose [J].
Zhanchao Wang ;
Ming Chen ;
Yuquan Xu ;
Shuying Li ;
Wei Lu ;
Shuzhen Ping ;
Wei Zhang ;
Min Lin .
Biotechnology Letters, 2008, 30 :657-663
[43]   Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis [J].
Sulfahri ;
Amin, Mohamad ;
Sumitro, Sutiman Bambang ;
Saptasari, Murni .
BIOFUELS-UK, 2016, 7 (06) :621-626
[44]   Central Metabolic Responses to the Overproduction of Fatty Acids in Escherichia coli Based on 13C-Metabolic Flux Analysis [J].
He, Lian ;
Xiao, Yi ;
Gebreselassie, Nikodimos ;
Zhang, Fuzhong ;
Antoniewicz, Maciek R. ;
Tang, Yinjie J. ;
Peng, Lifeng .
BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (03) :575-585
[45]   Engineering Escherichia coli for efficient conversion of glucose to pyruvate [J].
Causey, TB ;
Shanmugam, KT ;
Yomano, LP ;
Ingram, LO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2235-2240
[46]   Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis [J].
Yang, Dongsoo ;
Park, Seon Young ;
Park, Yae Seul ;
Eun, Hyunmin ;
Lee, Sang Yup .
TRENDS IN BIOTECHNOLOGY, 2020, 38 (07) :745-765
[47]   Metabolic engineering of Escherichia coli to produce succinic acid [J].
Tang W. ;
Wang X. ;
Guo L. ;
Ji L. ;
Gao C. ;
Chen X. ;
Liu L. .
Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (02) :938-950
[48]   Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli [J].
Wu, Tong ;
Liu, Yumei ;
Liu, Jinsheng ;
Chen, Zhenya ;
Huo, Yi-Xin .
BIOMOLECULES, 2022, 12 (05)
[49]   Engineering Zymomonas mobilis for the Production of Xylonic Acid from Sugarcane Bagasse Hydrolysate [J].
Janner Herrera, Christiane Ribeiro ;
Vieira, Vanessa Rodrigues ;
Benoliel, Tiago ;
Galrao Correa Carneiro, Clara Vida ;
De Marco, Janice Lisboa ;
Pepe de Moraes, Lidia Maria ;
Moreira de Almeida, Joao Ricardo ;
Goncalves Torres, Fernando Araripe .
MICROORGANISMS, 2021, 9 (07)
[50]   Metabolic engineering of Escherichia coli for the production of phenol from glucose [J].
Kim, Byoungjin ;
Park, Hyegwon ;
Na, Dokyun ;
Lee, Sang Yup .
BIOTECHNOLOGY JOURNAL, 2014, 9 (05) :621-629