Magnetoelectric Effect in the Bidomain Lithium Niobate/Nickel/Metglas Gradient Structure

被引:6
|
作者
Bichurin, Mirza, I [1 ]
Sokolov, Oleg, V [1 ]
Leontiev, Viktor S. [1 ]
Petrov, Roman, V [1 ]
Tatarenko, Alexander S. [1 ]
Semenov, Gennadiy A. [1 ]
Ivanov, Sergey N. [1 ]
Turutin, Andrei, V [2 ,3 ,4 ]
Kubasov, Ilya, V [2 ]
Kislyuk, Alexander M. [2 ]
Malinkovich, Mikhail D. [2 ]
Parkhomenko, Yuriy N. [2 ]
Kholkin, Andrei L. [2 ,3 ,5 ,6 ]
Sobolev, Nikolai A. [3 ,4 ]
机构
[1] Novgorod State Univ, Inst Elect & Informat Syst, Veliky Novgorod 173003, Russia
[2] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[3] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
[4] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[6] Ural Fed Univ, Sch Nat Sci & Math, Ekaterinburg 620000, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2020年 / 257卷 / 03期
基金
俄罗斯科学基金会;
关键词
bidomain crystals; gradient structures; lithium niobate; magnetoelectric effect; EQUIVALENT MAGNETIC NOISE; NIOBATE; HARVESTER; VIBRATION;
D O I
10.1002/pssb.201900398
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The paper describes the magnetoelectric (ME) effect in a gradient laminate structure consisting of a LiNbO3/Ni/metglas multilayer based on a bidomain lithium niobate single crystal with a Y + 128 degrees cut. The main purpose of the work is to obtain a self-biased structure. A theoretical and experimental study is conducted to determine the optimal thickness of the Ni film for creating such a structure. The application of self-biased structures based on gradient bidomain crystals in ME devices can significantly reduce their weight and dimensions as well as improve their electrical characteristics.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Relationship between the optical inhomogeneity and microdomain structure of lithium niobate
    Smirnov, AB
    Ped'ko, BB
    CRYSTALLOGRAPHY REPORTS, 2005, 50 (01) : 124 - 126
  • [32] Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides
    Sosunov, Aleksei
    Ponomarev, Roman
    Semenova, Oksana
    Petukhov, Igor
    Volyntsev, Anatoly
    OPTICAL MATERIALS, 2019, 88 : 176 - 180
  • [33] The magnetoelectric effect and double-perovskite structure
    Bahoosh, Safa Golrokh
    Wesselinowa, Julia M.
    Trimper, Steffen
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (08): : 1602 - 1606
  • [34] Etching effect on periodic domain structures of lithium niobate crystals
    Bermudez, V
    Caccavale, F
    Sada, C
    Segato, F
    Dieguez, E
    JOURNAL OF CRYSTAL GROWTH, 1998, 191 (03) : 589 - 593
  • [35] Determination of the Dielectrophoretic Force Induced by the Photovoltaic Effect on Lithium Niobate
    Meggiolaro, Alessio
    Cremaschini, Sebastian
    Ferraro, Davide
    Zaltron, Annamaria
    Carneri, Mattia
    Pierno, Matteo
    Sada, Cinzia
    Mistura, Giampaolo
    MICROMACHINES, 2022, 13 (02)
  • [36] Effect of contact phenomena on the electrical conductivity of reduced lithium niobate
    Shportenko A.S.
    Kislyuk A.M.
    Turutin A.V.
    Kubasov I.V.
    Malinkovich M.D.
    Parkhomenko Y.N.
    Modern Electronic Materials, 2021, 7 (04): : 167 - 175
  • [37] Giant increase of the photorefractive effect in lithium niobate: a novel approach
    Bazzan, M.
    Michieletto, M.
    Bacci, L.
    Argiolas, N.
    Zaltron, A.
    Ciampolillo, M. V.
    Pozza, G.
    Sada, C.
    MICRO-OPTICS 2012, 2012, 8428
  • [38] The use of surface charging in the SEM for lithium niobate domain structure investigation
    Kokhanchik, L. S.
    MICRON, 2009, 40 (01) : 41 - 45
  • [39] LOCAL LATTICE STRUCTURE AND DOPANT OCCUPANCY OF DOPED LITHIUM NIOBATE CRYSTALS
    Zhang, Zhigang
    Xue, Dongfeng
    MODERN PHYSICS LETTERS B, 2009, 23 (31-32): : 3687 - 3694
  • [40] Compact Lithium Niobate Waveguide Mode Converter Employing Metasurface Structure
    Lin, Wang
    Yang, Gao
    Hao, Shi
    Lei, Zhang
    Kun, Yin
    ACTA OPTICA SINICA, 2023, 43 (16)