A systematic view of computational methods for identifying driver genes based on somatic mutation data

被引:5
作者
Kan, Yingxin [1 ]
Jiang, Limin [1 ]
Tang, Jijun [2 ]
Guo, Yan [3 ]
Guo, Fei [4 ]
机构
[1] Tianjin Univ, Tianjin, Peoples R China
[2] Univ South Carolina, Columbia, SC 29208 USA
[3] Univ New Mexico, Comprehens Canc Ctr, Albuquerque, NM 87131 USA
[4] Cent South Univ, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer driver genes; driver mutations; computational tools; frequency; functional impact; clustering; PASSENGER MUTATIONS; CANCER GENES; HUMAN BREAST; EXPRESSION; DISCOVERY; ACCUMULATION; LANDSCAPE; ONCOGENES; VARIANTS; PATTERNS;
D O I
10.1093/bfgp/elab032
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Abnormal changes of driver genes are serious for human health and biomedical research. Identifying driver genes, exactly from enormous genes with mutations, promotes accurate diagnosis and treatment of cancer. A lot of works about uncovering driver genes have been developed over the past decades. By analyzing previous works, we find that computational methods are more efficient than traditional biological experiments when distinguishing driver genes from massive data. In this study, we summarize eight common computational algorithms only using somatic mutation data. We first group these methods into three categories according to mutation features they apply. Then, we conclude a general process of nominating candidate cancer driver genes. Finally, we evaluate three representative methods on 10 kinds of cancer derived from The Cancer Genome Atlas Program and five Chinese projects from the International Cancer Genome Consortium. In addition, we compare results of methods with various parameters. Evaluation is performed from four perspectives, including CGC, OG/TSG, Q-value and QQQuantile-Quantileplot. To sum up, we present algorithms using somatic mutation data in order to offer a systematic view of various mutation features and lay the foundation of methods based on integration of mutation information and other types of data.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 86 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[3]   NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest [J].
Andries, Vanessa ;
Vandepoele, Karl ;
Staes, Katrien ;
Berx, Geert ;
Bogaert, Pieter ;
Van Isterdael, Gert ;
Ginneberge, Daisy ;
Parthoens, Eef ;
Vandenbussche, Jonathan ;
Gevaert, Kris ;
van Roy, Frans .
BMC CANCER, 2015, 15
[4]  
Arnedopac C, BIORXIV2018500132
[5]   Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma [J].
Asangani, Irfan A. ;
Harms, Paul W. ;
Dodson, Lois ;
Pandhi, Mithil ;
Kunju, Lakshmi P. ;
Maher, Christopher A. ;
Fullen, Douglas R. ;
Johnson, Timothy M. ;
Giordano, Thomas J. ;
Palanisamy, Nallasivam ;
Chinnaiyan, Arul M. .
ONCOTARGET, 2012, 3 (09) :1011-1025
[6]   Phosphorylated AKT Expression Is Associated With PIK3CA Mutation, Low Stage, and Favorable Outcome in 717 Colorectal Cancers [J].
Baba, Yoshifumi ;
Nosho, Katsuhiko ;
Shima, Kaori ;
Hayashi, Marika ;
Meyerhardt, Jeffrey A. ;
Chan, Andrew T. ;
Giovannucci, Edward ;
Fuchs, Charles S. ;
Ogino, Shuji .
CANCER, 2011, 117 (07) :1399-1408
[7]  
Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
[8]   DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer [J].
Bashashati, Ali ;
Haffari, Gholamreza ;
Ding, Jiarui ;
Ha, Gavin ;
Lui, Kenneth ;
Rosner, Jamie ;
Huntsman, David G. ;
Caldas, Carlos ;
Aparicio, Samuel A. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2012, 13 (12) :R124
[9]   iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human [J].
Bergamaschi, D ;
Samuels, Y ;
O'Neil, NJ ;
Trigiante, G ;
Crook, T ;
Hsieh, JK ;
O'Connor, DJ ;
Zhong, S ;
Campargue, I ;
Tomlinson, ML ;
Kuwabara, PE ;
Lu, X .
NATURE GENETICS, 2003, 33 (02) :162-167
[10]   Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles [J].
Bertrand, Denis ;
Chng, Kern Rei ;
Sherbaf, Faranak Ghazi ;
Kiesel, Anja ;
Chia, Burton K. H. ;
Sia, Yee Yen ;
Huang, Sharon K. ;
Hoon, Dave S. B. ;
Liu, Edison T. ;
Hillmer, Axel ;
Nagarajan, Niranjan .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07)