Characterizing TiO2(110) surface states by their work function

被引:95
作者
Borodin, Andriy [1 ]
Reichling, Michael [1 ]
机构
[1] Univ Osnabruck, Fachbereich Phys, D-49069 Osnabruck, Germany
关键词
IMPACT ELECTRON-SPECTROSCOPY; RUTILE TIO2(110); ATOMIC-STRUCTURE; TIO2; ADSORPTION; HYDROGEN; GAP; H2O; STM; O-2;
D O I
10.1039/c0cp02835e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The unreconstructed TiO2(110) surface is prepared in well-defined states having different characteristic stoichiometries, namely reduced (r-TiO2, 6 to 9% surface vacancies), hydroxylated (h-TiO2, vacancies filled with OH), oxygen covered (ox-TiO2, oxygen adatoms on a stoichiometric surface) and quasi-stoichiometric (qs-TiO2, a stoichiometric surface with very few defects). The electronic structure and work function of these surfaces and transition states between them are investigated by ultraviolet photoelectron spectroscopy (UPS) and metastable impact electron spectroscopy (MIES). The character of the surface is associated with a specific value of the work function that varies from 4.9 eV for h-TiO2, 5.2 eV for r-TiO2, 5.35 eV for ox-TiO2 to 5.5 eV for qs-TiO2. We establish the method for an unambiguous characterization of TiO2(110) surface states solely based on the secondary electron emission characteristics. This is facilitated by analysing a weak electron emission below the nominal work function energy. The emission in the low energy cut-off region appears correlated with band gap emission found in UPS spectra and is attributed to localised electron emission through Ti3+(3d) states.
引用
收藏
页码:15442 / 15447
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 1996, The Surface Science of Metal Oxides
[2]   Two (1 x 2) reconstructions of TiO2(110):: Surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy [J].
Bennett, RA ;
Stone, P ;
Price, NJ ;
Bowker, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (19) :3831-3834
[3]   The role of Ti3+ interstitials in TiO2(110) reduction and oxidation [J].
Bowker, Michael ;
Bennett, Roger A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (47)
[4]   Study of the electronic structure of TiO2(110) and Cs/TiO2(110) with metastable impact electron spectroscopy and ultraviolet photoemission spectroscopy(HeI) [J].
Brause, M ;
Skordas, S ;
Kempter, V .
SURFACE SCIENCE, 2000, 445 (2-3) :224-234
[5]   Controlling the work function of indium tin oxide: Differentiating bipolar from local surface effects [J].
Bruner, EL ;
Koch, N ;
Span, AR ;
Bernasek, SL ;
Kahn, A ;
Schwartz, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (13) :3192-3193
[6]   Localized Electronic States from Surface Hydroxyls and Polarons in TiO2(110) [J].
Deskins, N. Aarori ;
Rousseau, Roger ;
Dupuis, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :14583-14586
[7]   Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[8]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[9]   Structure and properties of TiO2 surfaces:: a brief review [J].
Diebold, U .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (05) :681-687
[10]   Evidence for the tunneling site on transition-metal oxides: TiO2(110) [J].
Diebold, U ;
Anderson, JF ;
Ng, KO ;
Vanderbilt, D .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1322-1325