IsoGeometric analysis using T-splines on two-patch geometries

被引:56
|
作者
da Veiga, L. Beira [2 ]
Buffa, A. [1 ]
Cho, D. [1 ]
Sangalli, G. [3 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
IsoGeometric analysis; T-splines; Approximation; Error estimates; FLUID-STRUCTURE INTERACTION; NONLINEAR ELASTICITY; FINITE-ELEMENTS; BLOOD-FLOW; NURBS; REFINEMENT; APPROXIMATIONS;
D O I
10.1016/j.cma.2011.02.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop optimal approximation estimates for T-splines in the case of geometries obtained by gluing two standard tensor product patches. We derive results both for the T-spline space in the parametric domain and the mapped T-NURBS in the physical one. A set of numerical tests in complete accordance with the theoretical developments is also presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1787 / 1803
页数:17
相关论文
共 50 条
  • [31] Local refinement for analysis-suitable plus plus T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 32 - 45
  • [32] Discrete fracture analysis using locally refined T-splines
    Chen, L.
    Verhoosel, C. V.
    de Borst, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (02) : 117 - 140
  • [33] A T-splines-oriented isogeometric topology optimization for plate and shell structures with arbitrary geometries using B<acute accent>ezier extraction
    Zhang, Xiao
    Xiao, Mi
    Gao, Liang
    Gao, Jie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [34] Construction of approximate C1 bases for isogeometric analysis on two-patch domains
    Weinmueller, Pascal
    Takacs, Thomas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [35] Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries
    Ruess, Martin
    Schillinger, Dominik
    Oezcan, Ali I.
    Rank, Ernst
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 269 : 46 - 71
  • [36] Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells
    Casquero, Hugo
    Liu, Lei
    Zhang, Yongjie
    Reali, Alessandro
    Kiendl, Josef
    Gomez, Hector
    COMPUTER-AIDED DESIGN, 2017, 82 : 140 - 153
  • [37] Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids
    Nguyen-Thanh, N.
    Nguyen-Xuan, H.
    Bordas, S. P. A.
    Rabczuk, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1892 - 1908
  • [38] Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries
    Kapl, Mario
    Buchegger, Florian
    Bercovier, Michel
    Juettler, Bert
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 209 - 234
  • [39] A Reduced Integration for Reissner-Mindlin Non-linear Shell Analysis Using T-Splines
    Adam, C.
    Bouabdallah, S.
    Zarroug, M.
    Maitournam, H.
    ISOGEOMETRIC ANALYSIS AND APPLICATIONS 2014, 2015, 107 : 103 - 125
  • [40] Isogeometric analysis of large thin shell structures based on weak coupling of substructures with unstructured T-splines patches
    Liu Zhenyu
    Cheng Jin
    Yang Minglong
    Yuan Pei
    Qiu Chan
    Gao Wei
    Tan Jianrong
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 135