Computational Thinking has become an important cognitive skill to develop in all areas of education. Despite its increasing popularity, the construct itself is only partially understood. There are few measures currently in place that advance our understanding of computational thinking and its sub constructs. In this article, we analyze existing measures of computational thinking (CT), looking specifically at their measures of decomposition. Decomposition is defined as the process of breaking down a problem into its sub-components. Even though most definitions of computational thinking include decomposition, few break down the decompositional process beyond a basic definition. As one of the first steps in the computational thinking process, it is important to better understand the various manners in which decomposition occurs, which methods are most effective, and under what conditions. To better understand the decompositional process, we analyze evidence of decompositional process in a variety of disciplines. We then present a framework for decomposition in computational thinking. We demonstrate how this framework may help educators to better prepare students to break down complex problems, as well as provide guidance for how decompositional ability might be measured.