Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy

被引:43
|
作者
Koo, Hyunseo [1 ]
Park, Ikbum [2 ]
Lee, Yoonhee [1 ]
Kim, Hyun Jin [3 ]
Jung, Jung Hoon [3 ]
Lee, Joo Han [3 ]
Kim, Youngkyu [1 ]
Kim, Joung-Hun [3 ]
Park, Joon Won [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem, 77 Cheongam Ro, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol, Div Integrat Biosci & Biotechnol, 77 Cheongam Ro, Pohang 37673, South Korea
[3] Pohang Univ Sci & Technol, Dept Life Sci, 77 Cheongam Ro, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
INTRACELLULAR MICRORNA; MESSENGER-RNA; NUCLEIC-ACID; IN-SITU; CANCER; EXPRESSION; DNA; RECOGNITION; PROBE; QUANTITATION;
D O I
10.1021/jacs.6b05048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MicroRNAs, (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be 'considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of.miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM). A hybrid binding domain (HBD)-tethered tip enabled mature miRNAs, but not premature miRNAs, to be located individually:on an adhesion force map. By scanning Several sections of a micrometer-sized DNA spot, we were able to quantify the copy number of miR-134 in a single neuron and demonstrate that the expression was increased upon cell activation. Moreover, we visualized individual miR-134s on fixed neurons after membrane removal and observed 2-4 miR-134s in the area of 1.0 x 1.0 mu m(2) of soma. The number increased to 8-14 in stimulated neurons, and this change matches the ensemble-averaged increase in copy number. These findings indicate that miRNAs can be reliably quantified at the single cell level with AFM and that their distribution can be mapped at nanometric lateral resolution without modification or amplification. Furthermore, the analysis of miRNAs, mRNAs, and proteins in the same sample or region by scanning sequentially with different AFM tips would let us :accurately understand the post-transcriptional regulation of biological processes.
引用
收藏
页码:11664 / 11671
页数:8
相关论文
共 50 条
  • [41] Probing tethered targets of a single biomolecular complex with atomic force microscopy
    Wu, Na
    Wang, Qi
    Zhou, Xingfei
    Jia, Si Si
    Fan, Youjie
    Hu, Jun
    Li, Bin
    JOURNAL OF MOLECULAR RECOGNITION, 2013, 26 (12) : 700 - 704
  • [42] Dimensional characterization of extracellular vesicles using atomic force microscopy
    Sebaihi, N.
    De Boeck, B.
    Yuana, Y.
    Nieuwland, R.
    Petry, J.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (03)
  • [43] Characterization of structures and molecular interactions of RNA and lipid carriers using atomic force microscopy
    Wang, Jingyi
    Zhang, Jiawen
    Li, Sijia
    Liu, Dengfeng
    Bhambhani, Akhilesh
    Zeng, Hongbo
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2023, 313
  • [44] Direct Quantification of Single-Molecules of MicroRNA by Total Internal Reflection Fluorescence Microscopy
    Chan, Ho-Man
    Chan, Lai-Sheung
    Wong, Ricky Ngok-Shun
    Li, Hung-Wing
    ANALYTICAL CHEMISTRY, 2010, 82 (16) : 6911 - 6918
  • [45] The interactions of cisplatin and DNA studied by atomic force microscopy
    Liu, Zhiguo
    Tan, Shengnan
    Zu, Yuangang
    Fu, Yujie
    Meng, Ronghua
    Xing, Zhimin
    MICRON, 2010, 41 (07) : 833 - 839
  • [46] Atomic force microscopy on chromosomes, chromatin and DNA: A review
    Kalle, Wouter
    Strappe, Padraig
    MICRON, 2012, 43 (12) : 1224 - 1231
  • [47] Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution
    Hayashida, Takuya
    Umemura, Kazuo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 143 : 526 - 531
  • [48] Imaging and Measuring the Molecular Force of Lymphoma Pathological Cells Using Atomic Force Microscopy
    Li, Mi
    Xiao, Xiubin
    Liu, Lianqing
    Xi, Ning
    Wang, Yuechao
    Dong, Zaili
    Zhang, Weijing
    SCANNING, 2013, 35 (01) : 40 - 46
  • [49] Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode
    Biczysko, P.
    Dzierka, A.
    Jozwiak, G.
    Rudek, M.
    Gotszalk, T.
    Janus, P.
    Grabiec, P.
    Rangelow, I. W.
    ULTRAMICROSCOPY, 2018, 184 : 199 - 208
  • [50] Single-Molecule Reconstruction of Oligonucleotide Secondary Structure by Atomic Force Microscopy
    Pyne, Alice
    Thompson, Ruth
    Leung, Carl
    Roy, Debdulal
    Hoogenboom, Bart W.
    SMALL, 2014, 10 (16) : 3257 - 3261