A note on the generation of random dynamical systems from fractional stochastic delay differential equations

被引:4
|
作者
Luu Hoang Duc [1 ,2 ,3 ]
Schmalfuss, Bjoern [4 ]
Siegmund, Stefan [2 ,3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, Hanoi 10307, Vietnam
[2] Tech Univ Dresden, Inst Anal, Dresden, Germany
[3] Tech Univ Dresden, Ctr Dynam, D-01069 Dresden, Germany
[4] Univ Jena, Inst Stochast, D-77043 Jena, Germany
关键词
Fractional Brownian motion; stochastic differential equations; stochastic delay differential equations; stochastic functional differential equations; ROUGH PATH-ANALYSIS; BROWNIAN-MOTION; EVOLUTION-EQUATIONS; DRIVEN; INTEGRATION; CALCULUS;
D O I
10.1142/S0219493715500185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we prove that a fractional stochastic delay differential equation which satisfies natural regularity conditions generates a continuous random dynamical system on a subspace of a Holder space which is separable.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] APPROXIMATION OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH FRACTIONAL BROWNIAN MOTION BY SOLUTIONS OF RANDOM ORDINARY DIFFERENTIAL EQUATIONS
    Ral'chenko, K. V.
    Shevchenko, H. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (09) : 1460 - 1475
  • [42] Setvalued Dynamical Systems for Stochastic Evolution Equations Driven by Fractional Noise
    Garrido-Atienza, M. J.
    Schmalfuss, B.
    Valero, J.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (01) : 79 - 105
  • [43] Setvalued Dynamical Systems for Stochastic Evolution Equations Driven by Fractional Noise
    M. J. Garrido-Atienza
    B. Schmalfuss
    J. Valero
    Journal of Dynamics and Differential Equations, 2022, 34 : 79 - 105
  • [44] Controllability of fractional stochastic delay equations
    Ahmed H.M.
    Lobachevskii Journal of Mathematics, 2009, 30 (3) : 195 - 202
  • [45] A DYNAMICAL THEORY FOR SINGULAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS II: NONLINEAR EQUATIONS AND INVARIANT MANIFOLDS
    Varzaneh, Mazyar Ghani
    Riedel, Sebastian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08): : 4587 - 4612
  • [46] Mixed Caputo Fractional Neutral Stochastic Differential Equations with Impulses and Variable Delay
    Abouagwa, Mahmoud
    Bantan, Rashad A. R.
    Almutiry, Waleed
    Khalaf, Anas D.
    Elgarhy, Mohammed
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [47] EULER SCHEME FOR FRACTIONAL DELAY STOCHASTIC DIFFERENTIAL EQUATIONS BY ROUGH PATHS TECHNIQUES
    Garzon, Johanna
    Tindel, Samy
    Torres, Soledad
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 747 - 763
  • [48] Finite time stability analysis for fractional stochastic neutral delay differential equations
    Asadzade, Javad A.
    Mahmudov, Nazim I.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5293 - 5317
  • [49] LONG TIME BEHAVIOR OF FRACTIONAL IMPULSIVE STOCHASTIC DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
    Xu, Jiaohui
    Caraballo, Tomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (06): : 2719 - 2743
  • [50] Averaging Principle for ?-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps
    Yang, Dandan
    Wang, Jingfeng
    Bai, Chuanzhi
    SYMMETRY-BASEL, 2023, 15 (07):