A note on the generation of random dynamical systems from fractional stochastic delay differential equations

被引:4
|
作者
Luu Hoang Duc [1 ,2 ,3 ]
Schmalfuss, Bjoern [4 ]
Siegmund, Stefan [2 ,3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, Hanoi 10307, Vietnam
[2] Tech Univ Dresden, Inst Anal, Dresden, Germany
[3] Tech Univ Dresden, Ctr Dynam, D-01069 Dresden, Germany
[4] Univ Jena, Inst Stochast, D-77043 Jena, Germany
关键词
Fractional Brownian motion; stochastic differential equations; stochastic delay differential equations; stochastic functional differential equations; ROUGH PATH-ANALYSIS; BROWNIAN-MOTION; EVOLUTION-EQUATIONS; DRIVEN; INTEGRATION; CALCULUS;
D O I
10.1142/S0219493715500185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we prove that a fractional stochastic delay differential equation which satisfies natural regularity conditions generates a continuous random dynamical system on a subspace of a Holder space which is separable.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives
    Liaqat, Muhammad Imran
    Din, Fahim Ud
    Albalawi, Wedad
    Nisar, Kottakkaran Sooppy
    Abdel-Aty, Abdel-Haleem
    AIMS MATHEMATICS, 2024, 9 (05): : 11194 - 11211
  • [32] An Averaging Principle for Stochastic Differential Delay Equations with Fractional Brownian Motion
    Xu, Yong
    Pei, Bin
    Li, Yongge
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [33] Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations
    Moghaddam, B. P.
    Zhang, Lei
    Lopes, A. M.
    Tenreiro Machado, J. A.
    Mostaghim, Z. S.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (03) : 379 - 396
  • [34] A note on the LaSalle-type theorems for stochastic differential delay equations
    Mao, XR
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 125 - 142
  • [35] Note on the solution of random differential equations via ψ-Hilfer fractional derivative
    S. Harikrishnan
    Kamal Shah
    Dumitru Baleanu
    K. Kanagarajan
    Advances in Difference Equations, 2018
  • [36] Note on the solution of random differential equations via ψ-Hilfer fractional derivative
    Harikrishnan, S.
    Shah, Kamal
    Baleanu, Dumitru
    Kanagarajan, K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [37] RANDOM ATTRACTOR FOR STOCHASTIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
    You, Honglian
    Yuan, Rong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1469 - 1484
  • [38] RANDOM ATTRACTOR FOR STOCHASTIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FINITE DELAY
    You, Honglian
    Yuan, Rong
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 77 - 92
  • [39] Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back
    Bortolussi, Luca
    Policriti, Alberto
    TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY XI, 2009, 5750 : 216 - +
  • [40] Approximation of solutions of stochastic differential equations with fractional Brownian motion by solutions of random ordinary differential equations
    Ral'chenko K.V.
    Shevchenko H.M.
    Ukrainian Mathematical Journal, 2011, 62 (9) : 1460 - 1475