Besting the Black-Box: Barrier Zones for Adversarial Example Defense

被引:1
|
作者
Mahmood, Kaleel [1 ]
Phuong Ha Nguyen [2 ]
Nguyen, Lam M. [3 ]
Nguyen, Thanh [4 ]
Van Dijk, Marten [5 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[2] eBay Inc, San Jose, CA 95125 USA
[3] Thomas J Watson Res Ctr, IBM Res, Yorktown Hts, NY 10562 USA
[4] Amazon Inc, Seattle, WA 98109 USA
[5] CWI Amsterdam, NL-1098 Amsterdam, Netherlands
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Adversarial machine learning; adversarial examples; adversarial defense; black-box attack; security; deep learning;
D O I
10.1109/ACCESS.2021.3138966
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adversarial machine learning defenses have primarily been focused on mitigating static, white-box attacks. However, it remains an open question whether such defenses are robust under an adaptive black-box adversary. In this paper, we specifically focus on the black-box threat model and make the following contributions: First we develop an enhanced adaptive black-box attack which is experimentally shown to be >= 30% more effective than the original adaptive black-box attack proposed by Papernot et al. For our second contribution, we test 10 recent defenses using our new attack and propose our own black-box defense (barrier zones). We show that our defense based on barrier zones offers significant improvements in security over state-of-the-art defenses. This improvement includes greater than 85% robust accuracy against black-box boundary attacks, transfer attacks and our new adaptive black-box attack, for the datasets we study. For completeness, we verify our claims through extensive experimentation with 10 other defenses using three adversarial models (14 different black-box attacks) on two datasets (CIFAR-10 and Fashion-MNIST).
引用
收藏
页码:1451 / 1474
页数:24
相关论文
共 50 条
  • [21] Adaptive hyperparameter optimization for black-box adversarial attack
    Zhenyu Guan
    Lixin Zhang
    Bohan Huang
    Bihe Zhao
    Song Bian
    International Journal of Information Security, 2023, 22 : 1765 - 1779
  • [22] Targeted Black-Box Adversarial Attack Method for Image Classification Models
    Zheng, Su
    Chen, Jialin
    Wang, Lingli
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [23] SCHMIDT: IMAGE AUGMENTATION FOR BLACK-BOX ADVERSARIAL ATTACK
    Shi, Yucheng
    Han, Yahong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [24] AKD: Using Adversarial Knowledge Distillation to Achieve Black-box Attacks
    Lian, Xin
    Huang, Zhiqiu
    Wang, Chao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [25] An Effective Way to Boost Black-Box Adversarial Attack
    Feng, Xinjie
    Yao, Hongxun
    Che, Wenbin
    Zhang, Shengping
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 393 - 404
  • [26] A review of black-box adversarial attacks on image classification
    Zhu, Yanfei
    Zhao, Yaochi
    Hu, Zhuhua
    Luo, Tan
    He, Like
    NEUROCOMPUTING, 2024, 610
  • [27] SIMULATOR ATTACK plus FOR BLACK-BOX ADVERSARIAL ATTACK
    Ji, Yimu
    Ding, Jianyu
    Chen, Zhiyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 636 - 640
  • [28] Adaptive hyperparameter optimization for black-box adversarial attack
    Guan, Zhenyu
    Zhang, Lixin
    Huang, Bohan
    Zhao, Bihe
    Bian, Song
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1765 - 1779
  • [29] Black-box Universal Adversarial Attack on Text Classifiers
    Zhang, Yu
    Shao, Kun
    Yang, Junan
    Liu, Hui
    2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, : 1 - 5
  • [30] Detection Tolerant Black-Box Adversarial Attack Against Automatic Modulation Classification With Deep Learning
    Qi, Peihan
    Jiang, Tao
    Wang, Lizhan
    Yuan, Xu
    Li, Zan
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (02) : 674 - 686