Bone-like apatite growth on controllable macroporous titanium scaffolds coated with microporous titania

被引:23
作者
Rao, Xi [1 ]
Li, Jing [1 ]
Feng, Xue [2 ]
Chu, Chenglin [3 ,4 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Chongqing 400715, Peoples R China
[2] Chongqing Med Univ, Univ Town Hosp, Dept Clin Lab, Chongqing 401331, Peoples R China
[3] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China
[4] Southeast Univ, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancellous bone; Macroporous Ti scaffold; Microporous titania coating; Apatite formation; MECHANICAL-PROPERTIES; POWDER-METALLURGY; ORTHOPEDIC APPLICATIONS; CANCELLOUS BONE; TI SCAFFOLDS; IMPLANTS; MICROSTRUCTURE; FABRICATION; BEHAVIOR; BIOACTIVITY;
D O I
10.1016/j.jmbbm.2017.09.014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, a simple, cost-effective approach of polymeric foam replication was used to produce three-dimensionally macroporous titanium scaffolds with controllable porosities and mechanical properties. Two kinds of porous titanium scaffolds with different porosities (74.7% and 87.6%) and pore sizes (360 gm and 750 pm) were fabricated. Both of the scaffolds exhibit good compressive strength (24.5 MPa and 13.5 MPa) with a low elastic modulus (0.23 GPa and 0.11 GPa), approximating the mechanical properties of nature human cancellous bone (E = 10-50 MPa, o = 0.01-3.0 GPa). Thereafter, the scaffolds were surface modified using plasma electrolyte oxidation (PEO) process to gain a bioactive porous titania ceramic coating. The SBF immersion test indicates PEO treated scaffolds show excellent bioactivity as the apatite rapidly nucleates and grows on the scaffold surface during 3-28 days. The results suggest that the highly porous titanium scaffolds with titania bioactive coatings are promising in cancellous bone replacement.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 49 条
[1]  
[Anonymous], 2008, THESIS
[2]   Porous NiTi for bone implants: A review [J].
Bansiddhi, A. ;
Sargeant, T. D. ;
Stupp, S. I. ;
Dunand, D. C. .
ACTA BIOMATERIALIA, 2008, 4 (04) :773-782
[3]  
Bowers K T, 1992, Int J Oral Maxillofac Implants, V7, P302
[4]   Titanium porous scaffolds from precursor powders:: rheological optimization of TiH2 slurries [J].
Cachinho, Sandra C. P. ;
Correia, Rui N. .
POWDER TECHNOLOGY, 2007, 178 (02) :109-113
[5]   Bioactive macroporous titanium implants highly interconnected [J].
Caparros, Cristina ;
Ortiz-Hernandez, Monica ;
Molmeneu, Meritxell ;
Punset, Miguel ;
Antonio Calero, Jose ;
Aparicio, Conrado ;
Fernandez-Fairen, Mariano ;
Perez, Roman ;
Javier Gil, Francisco .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2016, 27 (10)
[6]   Micro-arc oxidation of β-titanium alloy: Structural characterization and osteoblast compatibility [J].
Chen, Hsien-Te ;
Hsiao, Ching-Hung ;
Long, Han-Yun ;
Chung, Chi-Jen ;
Tang, Chih-Hsin ;
Chen, Keh-Chang ;
He, Ju-Liang .
SURFACE & COATINGS TECHNOLOGY, 2009, 204 (6-7) :1126-1131
[7]   Bone, grafts and bone graft substitutes in orthopedic trauma surgery - A critical analysis [J].
De Long, William G., Jr. ;
Einhorn, Thomas A. ;
Koval, Kenneth ;
McKee, Michael ;
Smith, Wade ;
Sanders, Roy ;
Watson, Tracy .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2007, 89A (03) :649-658
[8]   Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities [J].
Deville, Sylvain .
MATERIALS, 2010, 3 (03) :1913-1927
[9]   Mechanical properties of cancellous bone of the distal humerus [J].
Dunham, CE ;
Takaki, SE ;
Johnson, JA ;
Dunning, CE .
CLINICAL BIOMECHANICS, 2005, 20 (08) :834-838
[10]   USE OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCUS RECONSTRUCTION .2. BIOLOGICAL EVALUATION OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCI [J].
ELEMA, H ;
DEGROOT, JH ;
NIJENHUIS, AJ ;
PENNINGS, AJ ;
VETH, RPH ;
KLOMPMAKER, J ;
JANSEN, HWB .
COLLOID AND POLYMER SCIENCE, 1990, 268 (12) :1082-1088