A Comprehensive Survey on Deep-Learning-Based Breast Cancer Diagnosis

被引:36
|
作者
Mridha, Muhammad Firoz [1 ]
Hamid, Md. Abdul [2 ]
Monowar, Muhammad Mostafa [2 ]
Keya, Ashfia Jannat [1 ]
Ohi, Abu Quwsar [1 ]
Islam, Md. Rashedul [3 ]
Kim, Jong-Myon [4 ]
机构
[1] Bangladesh Univ Business & Technol, Dept Comp Sci & Engn, Dhaka 1216, Bangladesh
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Technol, Jeddah 21589, Saudi Arabia
[3] Univ Asia Pacific, Dept Comp Sci & Engn, Dhaka 1216, Bangladesh
[4] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 680749, South Korea
关键词
breast cancer diagnosis; neural networks; image pre-processing; imaging modalities; COMPUTER-AIDED DIAGNOSIS; CONVOLUTIONAL NEURAL-NETWORKS; DIGITAL MAMMOGRAMS; MITOSIS DETECTION; CLASSIFICATION; SYSTEM; HISTOLOGY; IMAGES; TUMORS; ENSEMBLE;
D O I
10.3390/cancers13236116
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Breast cancer was diagnosed in 2.3 million women, and around 685,000 deaths from breast cancer were recorded globally in 2020, making it the most common cancer. Early and accurate detection of breast cancer plays a critical role in improving the prognosis and bringing the patient survival rate to 50%. Deep learning-based computer-aided diagnosis (CAD) has achieved remarkable performance in early breast cancer diagnosis. This review focuses on literature considering deep learning architecture for breast cancer diagnosis. Therefore, this study anchors a well systematic and analytical review from six aspects: the model architecture of breast cancer diagnosis, datasets and image pre-processing, the manner of breast-cancer imaging, performance measurements, and research directions. Breast cancer is now the most frequently diagnosed cancer in women, and its percentage is gradually increasing. Optimistically, there is a good chance of recovery from breast cancer if identified and treated at an early stage. Therefore, several researchers have established deep-learning-based automated methods for their efficiency and accuracy in predicting the growth of cancer cells utilizing medical imaging modalities. As of yet, few review studies on breast cancer diagnosis are available that summarize some existing studies. However, these studies were unable to address emerging architectures and modalities in breast cancer diagnosis. This review focuses on the evolving architectures of deep learning for breast cancer detection. In what follows, this survey presents existing deep-learning-based architectures, analyzes the strengths and limitations of the existing studies, examines the used datasets, and reviews image pre-processing techniques. Furthermore, a concrete review of diverse imaging modalities, performance metrics and results, challenges, and research directions for future researchers is presented.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Deep Learning Based Mammographic Breast Cancer Diagnosis: A Technical Review
    Yu, S.
    Zhang, E.
    Yang, Z.
    Lu, W.
    Gu, X.
    Xie, Y.
    MEDICAL PHYSICS, 2019, 46 (06) : E571 - E572
  • [32] Evaluation of a Deep-Learning-Based Planning Solution for Rectal Cancer
    Peng, J.
    Wang, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E908 - E909
  • [33] Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation
    Almajalid, Rania
    Shan, Juan
    Du, Yaodong
    Zhang, Ming
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1103 - 1108
  • [34] A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
    Sohaib, Muhammad
    Kim, Cheol-Hong
    Kim, Jong-Myon
    SENSORS, 2017, 17 (12)
  • [35] Deep-Learning-Based Autosegmentation Outperforms Atlas-Based Autosegmentation in a Clinical Cohort of Breast Cancer Patients
    Kleijnen, J. J. E.
    Akhiat, A.
    Hoogeman, M. S.
    Petit, S. F.
    MEDICAL PHYSICS, 2020, 47 (06) : E418 - E418
  • [36] DEEP-LEARNING-BASED LOCALIZATION OF BREAST BIOPSY MARKER IN ULTRASOUND DATA
    Kodarapu, Rahul
    Fassbender, Torsten
    Reinisch, Mattea
    Sudikatus, Paula
    Rieger, Jan
    Kuemmel, Sherko
    ANTICANCER RESEARCH, 2023, 43 (07) : 3375 - 3376
  • [37] A Comprehensive Survey of Recommender Systems Based on Deep Learning
    Zhou, Hongde
    Xiong, Fei
    Chen, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [38] Video restoration based on deep learning: a comprehensive survey
    Rota, Claudio
    Buzzelli, Marco
    Bianco, Simone
    Schettini, Raimondo
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5317 - 5364
  • [39] A Comprehensive Survey on Image Dehazing Based on Deep Learning
    Gui, Jie
    Cong, Xiaofeng
    Cao, Yuan
    Ren, Wenqi
    Zhang, Jun
    Zhang, Jing
    Tao, Dacheng
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4426 - 4433
  • [40] Video restoration based on deep learning: a comprehensive survey
    Claudio Rota
    Marco Buzzelli
    Simone Bianco
    Raimondo Schettini
    Artificial Intelligence Review, 2023, 56 : 5317 - 5364