Hybrid Deep Neural Network-Based Generation Rescheduling for Congestion Mitigation in Spot Power Market

被引:11
作者
Agrawal, Anjali [1 ]
Pandey, Seema N. [2 ]
Srivastava, Laxmi [1 ]
Walde, Pratima [3 ]
Singh, Saumya [3 ]
Khan, Baseem [4 ]
Saket, R. K. [3 ]
机构
[1] Madhav Inst Sci & Technol, Dept Elect Engn, Gwalior 474001, Madhya Pradesh, India
[2] Dr Bhim Rao Ambedkar Polytech Coll, Dept Elect Engn, Gwalior 474001, Madhya Pradesh, India
[3] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, Uttar Pradesh, India
[4] Hawassa Univ, Dept Elect & Comp Engn, Hawassa 05, Ethiopia
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Costs; Power markets; Loading; Hybrid power systems; Power generation; Minimization; Generators; Bilateral; multilateral transactions; congestion management; deep neural network; generation rescheduling; modified back propagation algorithm-based ANN; PARTICLE SWARM OPTIMIZATION; MODEL; SENSITIVITY; ALGORITHM; REAL;
D O I
10.1109/ACCESS.2022.3157846
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the open-access power market environment, the continuously varying loading and accommodation of various bilateral and multilateral transactions, sometimes leads to congestion, which is not desirable. In a day ahead or spot power market, generation rescheduling (GR) is one of the most prominent techniques to be adopted by the system operator (SO) to release congestion. In this paper, a novel hybrid Deep Neural Network (NN) is developed for projecting rescheduled generation dispatches at all the generators. The proposed hybrid Deep Neural Network is a cascaded combination of modified back-propagation (BP) algorithm based ANN as screening module and Deep NN as GR module. The screening module segregates the congested and non-congested loading scenarios resulting due to bilateral/multilateral transactions, efficiently and accurately. However, the GR module projects the re-scheduled active power dispatches at all the generating units at minimum congestion cost for all unseen congested loading scenarios instantly. The present approach provides a ready/instantaneous solution to manage congestion in a spot power market. During the training, the Root Mean Square Error (RMSE) is evaluated and minimized. The effectiveness of the proposed method has been demonstrated on the IEEE 30-bus system. The maximum error incurred during the testing phase is found 1.191% which is within the acceptable accuracy limits.
引用
收藏
页码:29267 / 29276
页数:10
相关论文
共 30 条
  • [1] AN IMPROVED ALGORITHM FOR NEURAL-NETWORK CLASSIFICATION OF IMBALANCED TRAINING SETS
    ANAND, R
    MEHROTRA, KG
    MOHAN, CK
    RANKA, S
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (06): : 962 - 969
  • [2] Aote S.S., 2013, Interanational Journal of Computer Science Engineering, V2, P196
  • [4] 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model
    Chen, Yaoran
    Wang, Yan
    Dong, Zhikun
    Su, Jie
    Han, Zhaolong
    Zhou, Dai
    Zhao, Yongsheng
    Bao, Yan
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [5] Real-Power Rescheduling of Generators for Congestion Management Using a Novel Satin Bowerbird Optimization Algorithm
    Chintam, Jagadeeswar Reddy
    Daniel, Mary
    [J]. ENERGIES, 2018, 11 (01):
  • [6] Optimal Rescheduling of Generators for Congestion Management Based on Particle Swarm Optimization
    Dutta, Sudipta
    Singh, S. P.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (04) : 1560 - 1569
  • [7] Locational Marginal Price Forecasting Using Deep Learning Network Optimized by Mapping-Based Genetic Algorithm
    Hong, Ying-Yi
    Taylar, Jonathan, V
    Fajardo, Arnel C.
    [J]. IEEE ACCESS, 2020, 8 : 91975 - 91988
  • [8] Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting
    Huang, Chiou-Jye
    Kuo, Ping-Huan
    [J]. IEEE ACCESS, 2019, 7 : 74822 - 74834
  • [9] A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
    Ju, Yun
    Sun, Guangyu
    Chen, Quanhe
    Zhang, Min
    Zhu, Huixian
    Rehman, Mujeeb Ur
    [J]. IEEE ACCESS, 2019, 7 : 28309 - 28318
  • [10] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968