Characterization of upper comonotonicity via tail convex order

被引:20
|
作者
Nam, Hee Seok [1 ]
Tang, Qihe [1 ]
Yang, Fan
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
来源
INSURANCE MATHEMATICS & ECONOMICS | 2011年 / 48卷 / 03期
关键词
Comonotonicity; Upper comonotonicity; Tail convex order; Haezendonck risk measures; RISK MEASURES; ACTUARIAL SCIENCE; FINANCE;
D O I
10.1016/j.insmatheco.2011.01.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we show a characterization of upper comonotonicity via tail convex order. For any given marginal distributions, a maximal random vector with respect to tail convex order is proved to be upper comonotonic under suitable conditions. As an application, we consider the computation of the Haezendonck risk measure of the sum of upper comonotonic random variables with exponential marginal distributions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 50 条
  • [1] Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order
    Cheung, Ka Chun
    Lo, Ambrose
    INSURANCE MATHEMATICS & ECONOMICS, 2013, 53 (02): : 334 - 342
  • [2] Characterization of comonotonicity using convex order
    Cheung, Ka Chun
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (03): : 403 - 406
  • [3] Improved convex upper bound via conditional comonotonicity
    Cheung, Ka Chun
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (02): : 651 - 655
  • [4] Upper comonotonicity and convex upper bounds for sums of random variables
    Dong, Jing
    Cheung, Ka Chun
    Yang, Hailiang
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 47 (02): : 159 - 166
  • [5] TAIL BEHAVIOR OF DISCOUNTED PORTFOLIO LOSS UNDER UPPER TAIL COMONOTONICITY
    Yang, Yang
    Bian, Tongxin
    Chen, Shaoying
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (03) : 1296 - 1317
  • [6] Comonotonicity, orthant convex order and sums of random variables
    Mesfioui, Mhamed
    Denuit, Michel M.
    STATISTICS & PROBABILITY LETTERS, 2015, 96 : 356 - 364
  • [7] Upper comonotonicity
    Cheung, Ka Chun
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 35 - 40
  • [8] Around convex ordering and comonotonicity
    LANOS laboratory, Badji-Mokhtar University, BP12 Annaba 23000, Algeria
    Int. J. Appl. Math. Stat., 6 (27-36):
  • [9] Around Convex Ordering and Comonotonicity
    Zeghdoudi, Halim
    Remita, Mohamed Riad
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2012, 30 (06): : 27 - 36
  • [10] TAIL COMONOTONICITY AND CONSERVATIVE RISK MEASURES
    Hua, Lei
    Joe, Harry
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2012, 42 (02) : 601 - 629