Laser melting deposition of a porosity-free alloy steel by application of high oxygen-containing powders mixed with Cr particles

被引:13
作者
Kang, Hongwei [1 ]
Dong, Zhihong [2 ]
Zhang, Wei [1 ]
Xie, Yujiang [2 ]
Peng, Xiao [3 ]
机构
[1] Univ Sci & Technol China, Coll Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Lab Corros & Protect, Shenyang 110016, Liaoning, Peoples R China
[3] Nanchang Hangkong Univ, Sch Mat Sci & Engn, 696 Fenghenan Ave, Nanchang 330063, Jiangxi, Peoples R China
关键词
Laser metal deposition; Alloy steels; Porosity; Microstructure; TEM; DIRECT METAL-DEPOSITION; MECHANICAL-PROPERTIES; MICROSTRUCTURE; COMPONENTS;
D O I
10.1016/j.vacuum.2018.10.059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser melting deposition (LMD) of an alloy steel by application of commercial 12CrNi2 powder with 0 content as high as 0.53 wt% has been investigated. It shows that the LMD alloy steel contains micron-sized pores. The pore formation, which is assumed to result from gas bubbles due to the reaction of carbon and oxygen in the laser molten pool, can be prevented by mixing the alloy steel powder with an appropriate amount of Cr particles. The result is interpreted based on reaction thermodynamics in the molten pool in combination with TEM observation of the microstructure of the LMDed alloy steel.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 26 条
  • [1] Producing titanium aerospace components from powder using laser forming
    Arcella, FG
    Froes, FH
    [J]. JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2000, 52 (05): : 28 - 30
  • [2] Barin I., 1995, Thermochemical Data of Pure Substances. Thermochemical Data of Pure Substances, P1815, DOI [DOI 10.1002/9783527619825, 10.1002/9783527619825.ch12l, 10.1002/9783527619825.ch12u, DOI 10.1002/9783527619825.CH12U]
  • [3] On the possible mechanisms of porosity formation during laser melt injection (LMI) technology
    Buza, G.
    Jano, V.
    Sveda, M.
    Verezub, O.
    Kalazi, Z.
    Kaptay, G.
    Roosz, A.
    [J]. MATERIALS SCIENCE, TESTING AND INFORMATICS IV, 2008, 589 : 79 - +
  • [4] Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability
    Dinda, G. P.
    Dasgupta, A. K.
    Mazumder, J.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 509 (1-2): : 98 - 104
  • [5] Metal Additive Manufacturing: A Review
    Frazier, William E.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) : 1917 - 1928
  • [6] Laser additive manufacturing of metallic components: materials, processes and mechanisms
    Gu, D. D.
    Meiners, W.
    Wissenbach, K.
    Poprawe, R.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) : 133 - 164
  • [7] Microstructural and corrosion characteristics of laser surface-melted plastics mold steels
    Kwok, CT
    Leong, KI
    Cheng, FT
    Man, HC
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 357 (1-2): : 94 - 103
  • [8] Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene'41 by laser melting deposition manufacturing
    Li, J.
    Wang, H. M.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (18-19): : 4823 - 4829
  • [9] Effect of carbon content on the microstructure and the crackina susceptibility of Fe-based laser-clad layer
    Li, S
    Hu, QW
    Zeng, XY
    Ji, SQ
    [J]. APPLIED SURFACE SCIENCE, 2005, 240 (1-4) : 63 - 70
  • [10] 3D printing of high-strength aluminium alloys
    Martin, John H.
    Yahata, Brennan D.
    Hundley, Jacob M.
    Mayer, Justin A.
    Schaedler, Tobias A.
    Pollock, Tresa M.
    [J]. NATURE, 2017, 549 (7672) : 365 - +